# Least-squares circle fitting

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is an implementation of the linear least-squares algorithm by Coope (1993) for circle fitting.

### The underlying JavaScript code

var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true});
var i, p = [], angle, co, si, delta = 0.8;

// Random points are constructed which lie roughly on a circle
// of radius 4 having the origin as center.
// delta*0.5 is the maximal distance in x- and y- direction of the random
// points from the circle line.
brd.suspendUpdate();
for (i=0;i<100;i++) {
angle = Math.random()*2*Math.PI;

co = 4*Math.cos(angle)+delta*(Math.random()-0.5);
si = 4*Math.sin(angle)+delta*(Math.random()-0.5);
p.push(brd.create('point',[co, si], {withLabel:false}));
}
brd.unsuspendUpdate();

// Having constructed the points, we can fit a circle
// through the point set, consisting of n points.
// The (n times 3) matrix consists of
//   x_1, y_1, 1
//   x_2, y_2, 1
//      ...
//   x_n, y_n, 1
// where x_i, y_i is the position of point p_i
// The vector y of length n consists of
//    x_i*x_i+y_i*y_i
// for i=1,...n.
var M = [], y = [], MT, B, c, z, n;
n = p.length;
for (i=0;i<n;i++) {
M.push([p[i].X(), p[i].Y(), 1.0]);
y.push(p[i].X()*p[i].X() + p[i].Y()*p[i].Y());
}

// Now, the general linear least-square fitting problem
//    min_z || M*z - y||_2^2
// is solved by solving the system of linear equations
//    (M^T*M) * z = (M^T*y)
// with Gauss elimination.
MT = JXG.Math.transpose(M);
B = JXG.Math.matMatMult(MT, M);
c = JXG.Math.matVecMult(MT, y);
z = JXG.Math.Numerics.Gauss(B, c);

// Finally, we can read from the solution vector z the coordinates [xm, ym] of the center
// and the radius r and draw the circle.
var xm = z[0]*0.5;
var ym = z[1]*0.5;
var r = Math.sqrt(z[2]+xm*xm+ym*ym);

brd.create('circle',[ [xm,ym], r]);


### References

• Coope, I.D., Circle fitting by linear and nonlinear least squares, Journal of Optimization Theory and Applications Volume 76, Issue 2, New York: Plenum Press, February 1993