Takagi–Landsberg curve: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 13: | Line 13: | ||
<jsxgraph width="500" height="500" box="box"> | <jsxgraph width="500" height="500" box="box"> | ||
var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: | var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 400, unitX: 450, unitY: 25}); | ||
var w = bd.createElement('slider', [[0,8],[0.8,8],[0,0.5 | var w = bd.createElement('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'}); | ||
var N = bd.createElement('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); | var N = bd.createElement('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); | ||
var s = function(x){ return Math.abs(x-Math.round(x)); }; | var s = function(x){ return Math.abs(x-Math.round(x)); }; | ||
Line 26: | Line 26: | ||
} | } | ||
return su; | return su; | ||
},0,1]); | },0,1],{strokeColor:'red'}); | ||
</jsxgraph> | </jsxgraph> | ||
===The JavaScript code to produce this picture=== | |||
<source lang="xml"> | |||
<jsxgraph width="500" height="500" box="box"> | |||
var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 400, unitX: 450, unitY: 25}); | |||
var w = bd.createElement('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'}); | |||
var N = bd.createElement('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); | |||
var s = function(x){ return Math.abs(x-Math.round(x)); }; | |||
var c = bd.createElement('functiongraph', [ | |||
function(x){ | |||
var n, su, wval; | |||
su = 0.0; | |||
wval = w.Value(); | |||
for (n=0;n<N.Value();n++) { | |||
su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | |||
} | |||
return su; | |||
},0,1],{strokeColor:'red'}); | |||
</jsxgraph> | |||
</source> | |||
===External links=== | |||
* [http://en.wikipedia.org/wiki/Blancmange_curve http://en.wikipedia.org/wiki/Blancmange_curve] | |||
[[Category:Examples]] | |||
[[Category:Curves]] |
Revision as of 17:38, 18 March 2009
The blancmange function is defined on the unit interval by
- [math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]
where [math]\displaystyle{ s(x) }[/math] is defined by [math]\displaystyle{ s(x)=\min_{n\in{\bold Z}}|x-n| }[/math], that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.
The Takagi–Landsberg curve is a slight generalization, given by
- [math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]
for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.
The JavaScript code to produce this picture
<jsxgraph width="500" height="500" box="box">
var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 400, unitX: 450, unitY: 25});
var w = bd.createElement('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});
var N = bd.createElement('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'});
var s = function(x){ return Math.abs(x-Math.round(x)); };
var c = bd.createElement('functiongraph', [
function(x){
var n, su, wval;
su = 0.0;
wval = w.Value();
for (n=0;n<N.Value();n++) {
su += Math.pow(wval,n)*s(Math.pow(2,n)*x);
}
return su;
},0,1],{strokeColor:'red'});
</jsxgraph>