Cauchy's mean value theorem: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 8: | Line 8: | ||
p[0] = board.create('point', [-2,1], {style:4}); | p[0] = board.create('point', [-2,1], {style:4}); | ||
p[1] = board.create('point', [-1,2], {style:4}); | p[1] = board.create('point', [-1,2], {style:4}); | ||
p[2] = board.create('point', [0,3], {style:4}); | p[2] = board.create('point', [0.5,3], {style:4}); | ||
p[3] = board.create('point', [1,2], {style:4}); | p[3] = board.create('point', [1,2], {style:4}); | ||
p[4] = board.create('point', [2,1], {style:4}); | p[4] = board.create('point', [2,1], {style:4}); | ||
Line 14: | Line 14: | ||
var graph = board.create('curve', fArray, {strokeWidth:3,strokeOpacity:0.5}); | var graph = board.create('curve', fArray, {strokeWidth:3,strokeOpacity:0.5}); | ||
var g = function(t) { | var g = function(t) { | ||
return board.D(fArray[0])(t)/board.D(fArray[1])(t)-(p[4].X()-p[0].X())/(p[4].Y()-p[0].Y()); | return board.D(fArray[0])(t)/board.D(fArray[1])(t)-(p[4].X()-p[0].X())/(p[4].Y()-p[0].Y()); | ||
Line 24: | Line 23: | ||
graph], {name:' ',style:6,fixed:true}); | graph], {name:' ',style:6,fixed:true}); | ||
board.create('tangent', [r], {strokeColor:'#ff0000'}); | board.create('tangent', [r], {strokeColor:'#ff0000'}); | ||
/* | |||
*/ | */ | ||
line = board.create('line',[p[0],p[4]],{strokeColor:'#ff0000',dash:1}); | line = board.create('line',[p[0],p[4]],{strokeColor:'#ff0000',dash:1}); |
Revision as of 12:54, 27 January 2010
Cauchy's mean value theorem is also known as extended mean value theorem. In Germany it is called Zweiter Mittelwertsatz.
DRAFT