SIR model: swine flu: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 1: Line 1:
The SIR model tries to model influenza epidemics. Here, we try to medel the spreading of the swine flu.
The SIR model,see also [[Epidemiology: The SIR model]] tries to model influenza epidemics. Here, we try to medel the spreading of the swine flu.
* According to the [http://www.cdc.gov/ CDC Centers of Disease Control and Prevention]: "Adults shed influenza virus from the day before symptoms begin through 5-10 days after illness onset. However, the amount of virus shed, and presumably infectivity, decreases rapidly by 3-5 days after onset in an experimental human infection model." So, here we set <math>\gamma=1/7=0.1428</math> as the recovery rate. This means, on average an infected person sheds the virus for 7 days.
* According to the [http://www.cdc.gov/ CDC Centers of Disease Control and Prevention]: "Adults shed influenza virus from the day before symptoms begin through 5-10 days after illness onset. However, the amount of virus shed, and presumably infectivity, decreases rapidly by 3-5 days after onset in an experimental human infection model." So, here we set <math>\gamma=1/7=0.1428</math> as the recovery rate. This means, on average an infected person sheds the virus for 7 days.
* In [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2715422 Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)] the authors estimate the reproduction rate <math>R_0</math> of the virus to be about <math>2</math>. For the SIR model this means: the reproduction rate <math>R_0</math> for influenza is equal to the infection rate of the strain (<math>\beta</math>) multiplied by the duration of the infectious period (<math>1/\gamma</math>), i.e.  
* In [http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2715422 Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)] the authors estimate the reproduction rate <math>R_0</math> of the virus to be about <math>2</math>. For the SIR model this means: the reproduction rate <math>R_0</math> for influenza is equal to the infection rate of the strain (<math>\beta</math>) multiplied by the duration of the infectious period (<math>1/\gamma</math>), i.e.  
Line 5: Line 5:
* We run the simulation for a population of 1 million people, where 1 person is infected initially, i.e. <math>s=1E{-6}</math>.
* We run the simulation for a population of 1 million people, where 1 person is infected initially, i.e. <math>s=1E{-6}</math>.
Thus S(0) = 1, I(0) = 1.E-6, R(0) = 0
Thus S(0) = 1, I(0) = 1.E-6, R(0) = 0
The lines in the JSXGraph-simulation below have the following meaning:
* <span style="color:Blue">Blue: Rate of susceptible population</span>
* <span style="color:red">Red: Rate of infected population</span>
* <span style="color:green">Green: Rate of recovered population
<html>
<html>
<form><input type="button" value="clear and run a simulation of 200 days" onClick="clearturtle();run()">
<form><input type="button" value="clear and run a simulation of 200 days" onClick="clearturtle();run()">
Line 18: Line 22:
   
   
var s = brd.createElement('slider', [[0,-0.3], [60,-0.3],[0,1E-6,1]], {name:'s'});
var s = brd.createElement('slider', [[0,-0.3], [60,-0.3],[0,1E-6,1]], {name:'s'});
brd.createElement('text', [90,-0.3, "initially infected population rate"]);
brd.createElement('text', [120,-0.3, "initially infected population rate"]);
var beta = brd.createElement('slider', [[0,-0.4], [60,-0.4],[0,0.2857,1]], {name:'&beta;'});
var beta = brd.createElement('slider', [[0,-0.4], [60,-0.4],[0,0.2857,1]], {name:'&beta;'});
brd.createElement('text', [90,-0.4, "&beta;: infection rate"]);
brd.createElement('text', [90,-0.4, "&beta;: infection rate"]);

Revision as of 11:33, 10 August 2009

The SIR model,see also Epidemiology: The SIR model tries to model influenza epidemics. Here, we try to medel the spreading of the swine flu.

  • According to the CDC Centers of Disease Control and Prevention: "Adults shed influenza virus from the day before symptoms begin through 5-10 days after illness onset. However, the amount of virus shed, and presumably infectivity, decreases rapidly by 3-5 days after onset in an experimental human infection model." So, here we set [math]\displaystyle{ \gamma=1/7=0.1428 }[/math] as the recovery rate. This means, on average an infected person sheds the virus for 7 days.
  • In Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1) the authors estimate the reproduction rate [math]\displaystyle{ R_0 }[/math] of the virus to be about [math]\displaystyle{ 2 }[/math]. For the SIR model this means: the reproduction rate [math]\displaystyle{ R_0 }[/math] for influenza is equal to the infection rate of the strain ([math]\displaystyle{ \beta }[/math]) multiplied by the duration of the infectious period ([math]\displaystyle{ 1/\gamma }[/math]), i.e.
[math]\displaystyle{ \beta = R_0\cdot \gamma }[/math]. Therefore, we set the :[math]\displaystyle{ \beta = 2\cdot 1/7 = 0.2857 }[/math]
  • We run the simulation for a population of 1 million people, where 1 person is infected initially, i.e. [math]\displaystyle{ s=1E{-6} }[/math].

Thus S(0) = 1, I(0) = 1.E-6, R(0) = 0 The lines in the JSXGraph-simulation below have the following meaning:

* Blue: Rate of susceptible population
* Red: Rate of infected population
* Green: Rate of recovered population