Takagi–Landsberg curve: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 14: | Line 14: | ||
<jsxgraph width="500" height="500" box="box"> | <jsxgraph width="500" height="500" box="box"> | ||
var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 250, unitX: 200, unitY: 25}); | var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 250, unitX: 200, unitY: 25}); | ||
var w = bd.createElement('slider', [[ | var w = bd.createElement('slider', [[0,8],[1,8],[0,4,6]], {name:'w'}); | ||
var N = bd.createElement('slider', [[ | var N = bd.createElement('slider', [[0,7],[1,7],[0,5,20]], {name:'N'}); | ||
var s = function(x){ return Math.abs(x-Math.round(x)); }; | var s = function(x){ return Math.abs(x-Math.round(x)); }; | ||
var c = bd.createElement('functiongraph', [ | var c = bd.createElement('functiongraph', [ | ||
Line 22: | Line 22: | ||
su = 0.0; | su = 0.0; | ||
wval = w.Value(); | wval = w.Value(); | ||
for (n=0;n<N. | for (n=0;n<N.Value();n++) { | ||
su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | ||
} | } |
Revision as of 17:34, 18 March 2009
The blancmange function is defined on the unit interval by
- [math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]
where [math]\displaystyle{ s(x) }[/math] is defined by [math]\displaystyle{ s(x)=\min_{n\in{\bold Z}}|x-n| }[/math], that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.
The Takagi–Landsberg curve is a slight generalization, given by
- [math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]
for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.