Cosine: Difference between revisions
From JSXGraph Wiki
Bookofproofs (talk | contribs) No edit summary |
Bookofproofs (talk | contribs) No edit summary |
||
(16 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The cosine is a projection of the complex number exp(−ix) (which is a point on the unit circle in the complex plane) to the real axis on the complex plane. In the following interactive figure, you can drag the point x on the real axis and observe the behaviour of the complex number exp(−ix) and the varying value of cosine(x). | |||
{| | |||
|Cosine | |||
|Unit Circle on the Complex Plane | |||
|- | |||
< | | <jsxgraph box="boxR" width="500" height="500"> | ||
var brd1 = JXG.JSXGraph.initBoard('boxR', {boundingbox: [-10, 1.5, 10, -1.5], axis:true}); | |||
var xr = brd1.create('line',[[-9,0],[9,0]],{visible:false}); | |||
var x = brd1.create('glider',[-9,0,xr],{visible:true, name:'x'}); | |||
var y = brd1.create('point',[x.X(),Math.cos(x.X())],{size:1,name:'',strokeColor:'green'}); | |||
var x1 = brd1.create('segment',[x,y],{visible:true, straightFirst:false,straightLast:false,strokeColor:'red'}); | |||
x.on('drag', function(){ transform(x);}); | |||
var f = brd1.create('functiongraph', | |||
[function(x){ | |||
return Math.cos(x); | |||
}]); | |||
brd1.create('text',[ | |||
function(){return x.X()+0.3;}, | |||
function(){return y.Y()*0.5;}, | |||
'cos'],{}); | |||
function transform(x) { | |||
p2.setPosition(JXG.COORDS_BY_USER,[Math.cos(x.X()),Math.sin(x.X())]); | |||
y.setPosition(JXG.COORDS_BY_USER,[x.X(),Math.cos(x.X())]); | |||
brd.update(); | |||
} | |||
< | </jsxgraph> | ||
| <jsxgraph box="box" width="500" height="500"> | |||
var brd = JXG.JSXGraph.initBoard('box', {boundingbox: [-1.5, 1.5, 1.5, -1.5], axis:true}); | |||
var brd = JXG.JSXGraph.initBoard('box', {boundingbox: [-1.5, 1.5, 1.5, -1.5], axis:true}); | brd1.addChild(brd); | ||
var ax = brd.create('line',[[0,0],[1,0]],{visible:false}); | |||
var ay = brd.create('line',[[0,0],[0,1]],{visible:false}); | |||
var ax = brd.create('line',[[0,0],[1,0]],{visible:false}); | |||
var ay = brd.create('line',[[0,0],[0,1]],{visible:false}); | |||
var p0 = brd.create('point',[0,0],{fixed:true,visible:false}); | var p0 = brd.create('point',[0,0],{fixed:true,visible:false}); | ||
var p1 = brd.create('point',[1,0],{name:'',visible:false,fixed:true}); | var p1 = brd.create('point',[1,0],{name:'',visible:false,fixed:true}); | ||
var c = brd.create('circle',[p0,p1],{dash:2,strokeWidth:1,strokeOpacity:0.6}); | var c = brd.create('circle',[p0,p1],{dash:2,strokeWidth:1,strokeOpacity:0.6}); | ||
var p2 = brd.create('point',[Math.cos(x.X()),Math.sin(x.X())],{name:'exp(ix)',fixed:true,size:1, strokeColor:'green'}); | var p2 = brd.create('point',[Math.cos(x.X()),Math.sin(x.X())],{name:'exp(ix)',fixed:true,size:1, strokeColor:'green'}); | ||
var p3 = brd.create('point',[function(){return p2.X();},0.0],{visible:false,name:'',withLabel:false}); | var p3 = brd.create('point',[function(){return p2.X();},0.0],{visible:false,name:'',withLabel:false}); | ||
var p4 = brd.create('point',[0.0,function(){return p2.Y();}],{visible:false,name:'',withLabel:false}); | var p4 = brd.create('point',[0.0,function(){return p2.Y();}],{visible:false,name:'',withLabel:false}); | ||
brd.create('line',[p2,p4],{straightFirst:false,straightLast:false,strokeColor:'red'}); // cos | brd.create('line',[p2,p4],{straightFirst:false,straightLast:false,strokeColor:'red'}); // cos | ||
brd.create('text',[ | brd.create('text',[ | ||
function(){return (p2.X()+p4.X())*0.3;}, | function(){return (p2.X()+p4.X())*0.3;}, | ||
function(){return p2.Y()+0.05;}, | function(){return p2.Y()+0.05;}, | ||
'cos'],{}); | 'cos'],{}); | ||
</jsxgraph> | |||
|} | |||
} | |||
[[Category:Contributions]] | [[Category:Contributions]] | ||
[[Category:Examples]] | |||
[http://www.bookofproofs.org/branches/cosine/ read more about cosine on Bookofproofs] |
Latest revision as of 13:21, 6 March 2016
The cosine is a projection of the complex number exp(−ix) (which is a point on the unit circle in the complex plane) to the real axis on the complex plane. In the following interactive figure, you can drag the point x on the real axis and observe the behaviour of the complex number exp(−ix) and the varying value of cosine(x).
Cosine | Unit Circle on the Complex Plane |