Analyze data with the Statistics software R: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(8 intermediate revisions by one other user not shown) | |||
Line 8: | Line 8: | ||
* radius-minimax estimator: green (optimally robust; cf. Rieder et al. (2008))<br /><br /> | * radius-minimax estimator: green (optimally robust; cf. Rieder et al. (2008))<br /><br /> | ||
By changing the y-position of the four movable points you should recognize the instability (non-robustness) of mean and standard deviation in contrast to the robust estimates; e.g., move one of the four movable points to the top of the plot.<br /><br /> | By changing the y-position of the four movable points you should recognize the instability (non-robustness) of mean and standard deviation in contrast to the robust estimates; e.g., move one of the four movable points to the top of the plot.<br /><br /> | ||
===Online results:=== | ===Online results:=== | ||
<html><script type="text/javascript" src="http://jsxgraph.uni-bayreuth.de/distrib/prototype.js"></script></html> | |||
<pre id='output'>Statistics:<br></pre> | <pre id='output'>Statistics:<br></pre> | ||
< | <jsxgraph width="700" height="400"> | ||
brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-0.15, 60, 11.15, -20],axis:true}); | |||
brd = JXG.JSXGraph.initBoard('jxgbox', { | |||
brd.suspendUpdate(); | brd.suspendUpdate(); | ||
var graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9; | var graph1,graph2,graph3,graph4,graph5,graph6,graph7,graph8,graph9; | ||
Line 39: | Line 33: | ||
y[6+i] = 10+z2*3; | y[6+i] = 10+z2*3; | ||
x[6+i] = 6+i; | x[6+i] = 6+i; | ||
p[i] = brd.createElement('point', [x[i],y[i]],{name:' ',fixed:true, | p[i] = brd.createElement('point', [x[i],y[i]],{name:' ',fixed:true,size:2,face:'[]'}); | ||
p[6+i] = brd.createElement('point', [x[6+i],y[6+i]],{name:' ',fixed:true, | p[6+i] = brd.createElement('point', [x[6+i],y[6+i]],{name:' ',fixed:true,size:2,face:'[]'}); | ||
}else{ | }else{ | ||
y[i] = 10+z1*3; | y[i] = 10+z1*3; | ||
p[i] = brd.createElement('point', [x[i],y[i]],{name:' ',fixed:true, | p[i] = brd.createElement('point', [x[i],y[i]],{name:' ',fixed:true,size:2,face:'[]'}); | ||
} | } | ||
} | } | ||
Line 67: | Line 61: | ||
brd.removeObject(p[9]); | brd.removeObject(p[9]); | ||
p[0] = brd.createElement('glider', [x[0],y[0],l[0]],{name:' ', | p[0] = brd.createElement('glider', [x[0],y[0],l[0]],{name:' ',size:4,face:'o'}); | ||
p[10] = brd.createElement('glider', [x[10],y[10],l[1]],{name:' ', | p[10] = brd.createElement('glider', [x[10],y[10],l[1]],{name:' ',size:4,face:'o'}); | ||
p[8] = brd.createElement('glider', [x[8],y[8],l[2]],{name:' ', | p[8] = brd.createElement('glider', [x[8],y[8],l[2]],{name:' ',size:4,face:'o'}); | ||
p[9] = brd.createElement('glider', [x[9],y[9],l[3]],{name:' ', | p[9] = brd.createElement('glider', [x[9],y[9],l[3]],{name:' ',size:4,face:'o'}); | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
Line 82: | Line 76: | ||
t += p[i].Y() + ';'; | t += p[i].Y() + ';'; | ||
} | } | ||
new Ajax.Request('/~ | new Ajax.Request('/~alfred/jsxgraph/examples/rserv.php', { | ||
method:'post', | method:'post', | ||
parameters:'input='+escape(t), | parameters:'input='+escape(t), | ||
Line 94: | Line 88: | ||
var sd = a[1]*1.0; | var sd = a[1]*1.0; | ||
var med = a[2]*1.0; | var med = a[2]*1.0; | ||
var mad = a[3]*1.0; | var mad = a[3]*1.0; | ||
var est1 = a[4]*1.0; | var est1 = a[4]*1.0; | ||
var est2 = a[5]*1.0; | var est2 = a[5]*1.0; | ||
if (!graph2) { | if (!graph2) { | ||
graph2 = brd.createElement('curve', [[x[0],x[x.length-1]],[m,m]], {strokecolor:'red'}); | graph2 = brd.createElement('curve', [[x[0],x[x.length-1]],[m,m]], {strokecolor:'red'}); | ||
Line 120: | Line 114: | ||
} | } | ||
document.getElementById('output').innerHTML = '<b><font size="+1">Normal location and scale:</font></b><br /><br />'+ | |||
'<b>Estimates for location (true value = 10):</b><br />' + | '<b>Estimates for location (true value = 10):</b><br />' + | ||
'Mean = ' + | 'Mean = ' + Math.round(m,2) + '<br />' + | ||
'Median = ' + | 'Median = ' + Math.round(med,2) + '<br />' + | ||
'Radius-minimax estimator = ' + | 'Radius-minimax estimator = ' + Math.round(est1,2) + '<br /><br />' + | ||
'<b>Estimates for scale (true value = 3):</b><br />' + | '<b>Estimates for scale (true value = 3):</b><br />' + | ||
'Standard deviation = ' + | 'Standard deviation = ' + Math.round(sd,2) + '<br />' + | ||
'MAD = ' + | 'MAD = ' + Math.round(mad,2) + '<br />' + | ||
'Radius-minimax estimator = ' + | 'Radius-minimax estimator = ' + Math.round(est2,2) + '<br />'; | ||
brd.update(); | brd.update(); | ||
}; | }; | ||
}}); | }}); | ||
} | } | ||
brd.addHook(doIt, 'mouseup'); | |||
</ | </jsxgraph> | ||
=== The underlying source code === | === The underlying source code === | ||
Line 151: | Line 145: | ||
* [http://en.wikipedia.org/wiki/Robust_statistics Wikipedia on Robust Statistics] | * [http://en.wikipedia.org/wiki/Robust_statistics Wikipedia on Robust Statistics] | ||
[[Category: | [[Category:Old]] | ||
Latest revision as of 12:55, 18 October 2024
Normal Location and Scale
This litte application sends the y-coordinates of the points which are normal distributed (pseudo-)random numbers to the server.
There, location and scale of the sample are estimated using the Statistics software R.
The return values are plotted and displayed.
The computed estimates are:
- mean, standard deviation: red (non-robust!)
- median and MAD: black (most-robust!)
- radius-minimax estimator: green (optimally robust; cf. Rieder et al. (2008))
By changing the y-position of the four movable points you should recognize the instability (non-robustness) of mean and standard deviation in contrast to the robust estimates; e.g., move one of the four movable points to the top of the plot.
Online results:
Statistics:<br>
The underlying source code
The underlying JavaScript and PHP code
The R script can be downloaded here.
References
- The Costs of not Knowing the Radius, Helmut Rieder, Matthias Kohl and Peter Ruckdeschel, Statistical Methods and Application 2008 Feb; 17(1): p.13-40; cf. also [1] for an extended version.
- Robust Asymptotic Statistics, Helmut Rieder, Springer, 1994.
- Numerical Contributions to the Asymptotic Theory of Robustness, Matthias Kohl, PhD-Thesis, University of Bayreuth, 2005; cf. also [2].