Trigonometric functions: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(13 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The well known trigonometric functions can be visualized on the circle | |||
of radius 1. See [http://en.wikipedia.org/wiki/Trigonometric_functions http://en.wikipedia.org/wiki/Trigonometric_functions] for the definitions. | |||
* '''Tangent''': <math>\tan x = \frac{\sin x}{\cos x}</math> | |||
* '''Cotangent''': <math>\cot x = \frac{\cos x}{\sin x}</math> | |||
* '''Secant''': <math>\sec x = \frac{1}{\cos x}</math> | |||
* '''Cosecant''': <math>\csc x = \frac{1}{\sin x}</math> | |||
<jsxgraph width="600" height="600" box="box"> | <jsxgraph width="600" height="600" box="box"> | ||
var brd = JXG.JSXGraph.initBoard('box', { | var brd = JXG.JSXGraph.initBoard('box', {boundingbox: [-3, 3, 3, -3]}); | ||
var ax = brd. | var ax = brd.create('line',[[0,0],[1,0]],{visible:false}); | ||
var ay = brd. | var ay = brd.create('line',[[0,0],[0,1]],{visible:false}); | ||
brd. | var p0 = brd.create('point',[0,0],{fixed:true,visible:false}); | ||
brd. | var p1 = brd.create('point',[1,0],{name:'',visible:false,fixed:true}); | ||
brd. | var c = brd.create('circle',[p0,p1],{dash:2,strokeWidth:1,strokeOpacity:0.6}); | ||
var p2 = brd.create('glider',[0.4,1.0,c],{name:'',withLabel:false}); | |||
var p3 = brd.create('point',[function(){return p2.X();},0.0],{visible:false,name:'',withLabel:false}); | |||
var p4 = brd.create('point',[0.0,function(){return p2.Y();}],{visible:false,name:'',withLabel:false}); | |||
brd.create('line',[p0,p2],{straightFirst:false,straightLast:false,strokeColor:'black'}); // Hypotenuse | |||
brd.create('line',[p2,p3],{straightFirst:false,straightLast:false,strokeColor:'red'}); // sin | |||
brd.create('line',[p2,p4],{straightFirst:false,straightLast:false,strokeColor:'red'}); // cos | |||
brd. | |||
brd. | var t = brd.create('tangent',[p2],{visible:false}); | ||
brd. | var p5 = brd.create('intersection',[t,ax,0],{visible:false,name:'',withLabel:false}); | ||
var p6 = brd.create('intersection',[t,ay,0],{visible:false,name:'',withLabel:false}); | |||
brd.create('line',[p5,p6],{straightFirst:false,straightLast:false}); // tan + cot | |||
brd.create('line',[p0,p6],{straightFirst:false,straightLast:false,strokeColor:'green'}); // csc | |||
brd.create('line',[p0,p5],{straightFirst:false,straightLast:false,strokeColor:'green'}); // sec | |||
brd. | brd.create('text',[ | ||
function(){return (p0.X()+p2.X())*0.5;}, | function(){return (p0.X()+p2.X())*0.5;}, | ||
function(){return (p0.Y()+p2.Y())*0.5;}, | function(){return (p0.Y()+p2.Y())*0.5;}, | ||
'1'],{}); | '1'],{}); | ||
brd. | brd.create('text',[ | ||
function(){return (p2.X()+p4.X())*0. | function(){return (p2.X()+p4.X())*0.3;}, | ||
function(){return (p2.Y()+p4.Y())*0.5;}, | function(){return (p2.Y()+p4.Y())*0.5;}, | ||
'cos'],{}); | 'cos'],{}); | ||
brd. | brd.create('text',[ | ||
function(){return (p2.X()+p3.X())*0.5;}, | function(){return (p2.X()+p3.X())*0.5;}, | ||
function(){return (p2.Y()+p3.Y())*0.5;}, | function(){return (p2.Y()+p3.Y())*0.5;}, | ||
'sin'],{}); | 'sin'],{}); | ||
brd. | brd.create('text',[ | ||
function(){return (p2.X()+p5.X())*0.5;}, | function(){return 0.1+(p2.X()+p5.X())*0.5;}, | ||
function(){return (p2.Y()+p5.Y())*0.5;}, | function(){return 0.1+(p2.Y()+p5.Y())*0.5;}, | ||
'tan'],{}); | 'tan'],{}); | ||
brd. | brd.create('text',[ | ||
function(){return (p2.X()+p6.X())*0.5;}, | function(){return 0.1+(p2.X()+p6.X())*0.5;}, | ||
function(){return (p2.Y()+p6.Y())*0.5;}, | function(){return 0.1+(p2.Y()+p6.Y())*0.5;}, | ||
'cot'],{}); | 'cot'],{}); | ||
brd. | brd.create('text',[ | ||
function(){return (p0.X()+p6.X())*0.5;}, | function(){return -0.2+(p0.X()+p6.X())*0.5;}, | ||
function(){return (p0.Y()+p6.Y())*0.5;}, | function(){return (p0.Y()+p6.Y())*0.5;}, | ||
'csc'],{}); | 'csc'],{}); | ||
brd. | brd.create('text',[ | ||
function(){return (p0.X()+p5.X())*0.5;}, | function(){return (p0.X()+p5.X())*0.5;}, | ||
function(){return (p0.Y()+p5.Y())*0.5;}, | function(){return (p0.Y()+p5.Y())*0.5;}, | ||
'sec'],{}); | 'sec'],{}); | ||
</jsxgraph> | |||
===The JavaScript Code=== | |||
<source lang="javascript"> | |||
var brd = JXG.JSXGraph.initBoard('box', {boundingbox: [-3, 3, 3, -3]}); | |||
var ax = brd.create('line',[[0,0],[1,0]],{visible:false}); | |||
var ay = brd.create('line',[[0,0],[0,1]],{visible:false}); | |||
var p0 = brd.create('point',[0,0],{fixed:true,visible:false}); | |||
var p1 = brd.create('point',[1,0],{name:'',visible:false,fixed:true}); | |||
var c = brd.create('circle',[p0,p1],{dash:2,strokeWidth:1,strokeOpacity:0.6}); | |||
var p2 = brd.create('glider',[0.4,1.0,c],{name:'',withLabel:false}); | |||
var p3 = brd.create('point',[function(){return p2.X();},0.0],{visible:false,name:'',withLabel:false}); | |||
var p4 = brd.create('point',[0.0,function(){return p2.Y();}],{visible:false,name:'',withLabel:false}); | |||
brd.create('line',[p0,p2],{straightFirst:false,straightLast:false,strokeColor:'black'}); // Hypotenuse | |||
brd.create('line',[p2,p3],{straightFirst:false,straightLast:false,strokeColor:'red'}); // sin | |||
brd.create('line',[p2,p4],{straightFirst:false,straightLast:false,strokeColor:'red'}); // cos | |||
var t = brd.create('tangent',[p2],{visible:false}); | |||
var p5 = brd.create('intersection',[t,ax,0],{visible:false,name:'',withLabel:false}); | |||
var p6 = brd.create('intersection',[t,ay,0],{visible:false,name:'',withLabel:false}); | |||
brd.create('line',[p5,p6],{straightFirst:false,straightLast:false}); // tan + cot | |||
brd.create('line',[p0,p6],{straightFirst:false,straightLast:false,strokeColor:'green'}); // csc | |||
brd.create('line',[p0,p5],{straightFirst:false,straightLast:false,strokeColor:'green'}); // sec | |||
brd.create('text',[ | |||
function(){return (p0.X()+p2.X())*0.5;}, | |||
function(){return (p0.Y()+p2.Y())*0.5;}, | |||
'1'],{}); | |||
brd.create('text',[ | |||
function(){return (p2.X()+p4.X())*0.3;}, | |||
function(){return (p2.Y()+p4.Y())*0.5;}, | |||
'cos'],{}); | |||
</ | brd.create('text',[ | ||
function(){return (p2.X()+p3.X())*0.5;}, | |||
function(){return (p2.Y()+p3.Y())*0.5;}, | |||
'sin'],{}); | |||
brd.create('text',[ | |||
function(){return 0.1+(p2.X()+p5.X())*0.5;}, | |||
function(){return 0.1+(p2.Y()+p5.Y())*0.5;}, | |||
'tan'],{}); | |||
brd.create('text',[ | |||
function(){return 0.1+(p2.X()+p6.X())*0.5;}, | |||
function(){return 0.1+(p2.Y()+p6.Y())*0.5;}, | |||
'cot'],{}); | |||
brd.create('text',[ | |||
function(){return -0.2+(p0.X()+p6.X())*0.5;}, | |||
function(){return (p0.Y()+p6.Y())*0.5;}, | |||
'csc'],{}); | |||
brd.create('text',[ | |||
function(){return (p0.X()+p5.X())*0.5;}, | |||
function(){return (p0.Y()+p5.Y())*0.5;}, | |||
'sec'],{}); | |||
</source> | |||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Geometry]] | [[Category:Geometry]] | ||
[[Category:Calculus]] | [[Category:Calculus]] |
Latest revision as of 16:10, 20 February 2013
The well known trigonometric functions can be visualized on the circle of radius 1. See http://en.wikipedia.org/wiki/Trigonometric_functions for the definitions.
- Tangent: [math]\displaystyle{ \tan x = \frac{\sin x}{\cos x} }[/math]
- Cotangent: [math]\displaystyle{ \cot x = \frac{\cos x}{\sin x} }[/math]
- Secant: [math]\displaystyle{ \sec x = \frac{1}{\cos x} }[/math]
- Cosecant: [math]\displaystyle{ \csc x = \frac{1}{\sin x} }[/math]
The JavaScript Code
var brd = JXG.JSXGraph.initBoard('box', {boundingbox: [-3, 3, 3, -3]});
var ax = brd.create('line',[[0,0],[1,0]],{visible:false});
var ay = brd.create('line',[[0,0],[0,1]],{visible:false});
var p0 = brd.create('point',[0,0],{fixed:true,visible:false});
var p1 = brd.create('point',[1,0],{name:'',visible:false,fixed:true});
var c = brd.create('circle',[p0,p1],{dash:2,strokeWidth:1,strokeOpacity:0.6});
var p2 = brd.create('glider',[0.4,1.0,c],{name:'',withLabel:false});
var p3 = brd.create('point',[function(){return p2.X();},0.0],{visible:false,name:'',withLabel:false});
var p4 = brd.create('point',[0.0,function(){return p2.Y();}],{visible:false,name:'',withLabel:false});
brd.create('line',[p0,p2],{straightFirst:false,straightLast:false,strokeColor:'black'}); // Hypotenuse
brd.create('line',[p2,p3],{straightFirst:false,straightLast:false,strokeColor:'red'}); // sin
brd.create('line',[p2,p4],{straightFirst:false,straightLast:false,strokeColor:'red'}); // cos
var t = brd.create('tangent',[p2],{visible:false});
var p5 = brd.create('intersection',[t,ax,0],{visible:false,name:'',withLabel:false});
var p6 = brd.create('intersection',[t,ay,0],{visible:false,name:'',withLabel:false});
brd.create('line',[p5,p6],{straightFirst:false,straightLast:false}); // tan + cot
brd.create('line',[p0,p6],{straightFirst:false,straightLast:false,strokeColor:'green'}); // csc
brd.create('line',[p0,p5],{straightFirst:false,straightLast:false,strokeColor:'green'}); // sec
brd.create('text',[
function(){return (p0.X()+p2.X())*0.5;},
function(){return (p0.Y()+p2.Y())*0.5;},
'1'],{});
brd.create('text',[
function(){return (p2.X()+p4.X())*0.3;},
function(){return (p2.Y()+p4.Y())*0.5;},
'cos'],{});
brd.create('text',[
function(){return (p2.X()+p3.X())*0.5;},
function(){return (p2.Y()+p3.Y())*0.5;},
'sin'],{});
brd.create('text',[
function(){return 0.1+(p2.X()+p5.X())*0.5;},
function(){return 0.1+(p2.Y()+p5.Y())*0.5;},
'tan'],{});
brd.create('text',[
function(){return 0.1+(p2.X()+p6.X())*0.5;},
function(){return 0.1+(p2.Y()+p6.Y())*0.5;},
'cot'],{});
brd.create('text',[
function(){return -0.2+(p0.X()+p6.X())*0.5;},
function(){return (p0.Y()+p6.Y())*0.5;},
'csc'],{});
brd.create('text',[
function(){return (p0.X()+p5.X())*0.5;},
function(){return (p0.Y()+p5.Y())*0.5;},
'sec'],{});