Analyze data with the Statistics software R: Difference between revisions
From JSXGraph Wiki
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 88: | Line 88: | ||
var sd = a[1]*1.0; | var sd = a[1]*1.0; | ||
var med = a[2]*1.0; | var med = a[2]*1.0; | ||
var mad = a[3]*1.0; | var mad = a[3]*1.0; | ||
var est1 = a[4]*1.0; | var est1 = a[4]*1.0; | ||
var est2 = a[5]*1.0; | var est2 = a[5]*1.0; | ||
if (!graph2) { | if (!graph2) { | ||
graph2 = brd.createElement('curve', [[x[0],x[x.length-1]],[m,m]], {strokecolor:'red'}); | graph2 = brd.createElement('curve', [[x[0],x[x.length-1]],[m,m]], {strokecolor:'red'}); | ||
Line 114: | Line 114: | ||
} | } | ||
document.getElementById('output').innerHTML = '<b><font size="+1">Normal location and scale:</font></b><br /><br />'+ | |||
'<b>Estimates for location (true value = 10):</b><br />' + | '<b>Estimates for location (true value = 10):</b><br />' + | ||
'Mean = ' + | 'Mean = ' + Math.round(m,2) + '<br />' + | ||
'Median = ' + | 'Median = ' + Math.round(med,2) + '<br />' + | ||
'Radius-minimax estimator = ' + | 'Radius-minimax estimator = ' + Math.round(est1,2) + '<br /><br />' + | ||
'<b>Estimates for scale (true value = 3):</b><br />' + | '<b>Estimates for scale (true value = 3):</b><br />' + | ||
'Standard deviation = ' + | 'Standard deviation = ' + Math.round(sd,2) + '<br />' + | ||
'MAD = ' + | 'MAD = ' + Math.round(mad,2) + '<br />' + | ||
'Radius-minimax estimator = ' + | 'Radius-minimax estimator = ' + Math.round(est2,2) + '<br />'; | ||
brd.update(); | brd.update(); | ||
}; | }; |
Revision as of 10:35, 21 February 2013
Normal Location and Scale
This litte application sends the y-coordinates of the points which are normal distributed (pseudo-)random numbers to the server.
There, location and scale of the sample are estimated using the Statistics software R.
The return values are plotted and displayed.
The computed estimates are:
- mean, standard deviation: red (non-robust!)
- median and MAD: black (most-robust!)
- radius-minimax estimator: green (optimally robust; cf. Rieder et al. (2008))
By changing the y-position of the four movable points you should recognize the instability (non-robustness) of mean and standard deviation in contrast to the robust estimates; e.g., move one of the four movable points to the top of the plot.
Online results:
Statistics:<br>
The underlying source code
The underlying JavaScript and PHP code
The R script can be downloaded here.
References
- The Costs of not Knowing the Radius, Helmut Rieder, Matthias Kohl and Peter Ruckdeschel, Statistical Methods and Application 2008 Feb; 17(1): p.13-40; cf. also [1] for an extended version.
- Robust Asymptotic Statistics, Helmut Rieder, Springer, 1994.
- Numerical Contributions to the Asymptotic Theory of Robustness, Matthias Kohl, PhD-Thesis, University of Bayreuth, 2005; cf. also [2].