Home
Random example
Search
Applications
Chemistry
Economy
Famous theorems
Geography
Physics
Sports
Test
Assessment
Calculus
3D
Applied calculus
Basic calculus
Differential equations
Function plotting
Implicit plotting
Sequences and series
Charts and data
Charts
Statistics
Curves
Interpolation
Intersection, Union, Difference
Lindenmayer Systems
Splines
Geometry
3D
Analytic
Euclidean
Basic constructions
Mappings
Non-Euclidean
Projective
Symmetry
Technical
Accessibility
Animation
Roulettes
Board options
First steps
Images
JSXGraph objects
Arcs and angles
Axes
Circles
Groups
Lines and arrows
Point
Polygons
Slider
Turtle
Vectors
JessieCode
Texts
Transformations
Video
jsxgraph.org
JSXGraph logo
JSXGraph
JSXGraph share

Share

Systems of differential equations
Show plain example
QR code
<iframe 
    src="https://jsxgraph.org/share/iframe/systems-of-differential-equations" 
    style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" 
    name="JSXGraph example: Systems of differential equations" 
    allowfullscreen
></iframe>
This code has to
f<sub>1</sub>(x,y1,y2)=<input type="text" id="odeinput1" value="y1+y2"><br />
f<sub>2</sub>(x,y1,y2)=<input type="text" id="odeinput2" value="y2+1"><input type=button value="ok" onclick="doIt()">

<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; ">
   <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div>
</div>

<script type = "text/javascript"> 
    /*
    This example is licensed under a 
    Creative Commons Attribution ShareAlike 4.0 International License.
    https://creativecommons.org/licenses/by-sa/4.0/
    
    Please note you have to mention 
    The Center of Mobile Learning with Digital Technology
    in the credits.
    */
    
    const BOARDID = 'board-0';

    var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-11, 11, 11, -11], keepaspectratio: true });
    var N = board.create('slider', [[-7, 9.5], [7, 9.5], [-15, 10, 15]], { name: 'N' });
    var P1 = board.create('point', [1, -1], { name: '(x_0,c_1)' });
    var line = board.create('line', [function() { return -P1.X(); }, function() { return 1; },
    function() { return 0; }], { visible: false });
    var P2 = board.create('glider', [1, -0.5, line], { name: '(x_0,c_2)' });
    
    var f;
    
    function doIt() {
        var txt1 = document.getElementById("odeinput1").value;
        var txt2 = document.getElementById("odeinput2").value;
    
        var snip1 = board.jc.snippet(txt1, true, 'x, y1, y2');
        var snip2 = board.jc.snippet(txt2, true, 'x, y1, y2');
        f = function(x, yy) {
            return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])];
        }
        board.update();
    }
    
    function ode() {
        return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(), P2.Y()], [P1.X(), P1.X() + N.Value()], 200, f);
    }
    
    var g1 = board.create('curve', [[0], [0]], { strokeColor: 'red', strokeWidth: 2, name: 'y_1', withLabel: false });
    var g2 = board.create('curve', [[0], [0]], { strokeColor: 'black', strokeWidth: 2, name: 'y_2', withLabel: false });
    g1.updateDataArray = function() {
        var data = ode();
        var h = N.Value() / 200;
        var i;
    
        this.dataX = [];
        this.dataY = [];
        for (i = 0; i < data.length; i++) {
            this.dataX[i] = P1.X() + i * h;
            this.dataY[i] = data[i][0];
        }
    };
    
    g2.updateDataArray = function() {
        var data = ode();
        var h = N.Value() / 200;
        var i;
    
        this.dataX = [];
        this.dataY = [];
        for (i = 0; i < data.length; i++) {
            this.dataX[i] = P2.X() + i * h;
            this.dataY[i] = data[i][1];
        }
    };
    doIt();
 </script> 
/*
This example is licensed under a 
Creative Commons Attribution ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

Please note you have to mention 
The Center of Mobile Learning with Digital Technology
in the credits.
*/

const BOARDID = 'your_div_id'; // Insert your id here!

var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-11, 11, 11, -11], keepaspectratio: true });
var N = board.create('slider', [[-7, 9.5], [7, 9.5], [-15, 10, 15]], { name: 'N' });
var P1 = board.create('point', [1, -1], { name: '(x_0,c_1)' });
var line = board.create('line', [function() { return -P1.X(); }, function() { return 1; },
function() { return 0; }], { visible: false });
var P2 = board.create('glider', [1, -0.5, line], { name: '(x_0,c_2)' });

var f;

function doIt() {
    var txt1 = document.getElementById("odeinput1").value;
    var txt2 = document.getElementById("odeinput2").value;

    var snip1 = board.jc.snippet(txt1, true, 'x, y1, y2');
    var snip2 = board.jc.snippet(txt2, true, 'x, y1, y2');
    f = function(x, yy) {
        return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])];
    }
    board.update();
}

function ode() {
    return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(), P2.Y()], [P1.X(), P1.X() + N.Value()], 200, f);
}

var g1 = board.create('curve', [[0], [0]], { strokeColor: 'red', strokeWidth: 2, name: 'y_1', withLabel: false });
var g2 = board.create('curve', [[0], [0]], { strokeColor: 'black', strokeWidth: 2, name: 'y_2', withLabel: false });
g1.updateDataArray = function() {
    var data = ode();
    var h = N.Value() / 200;
    var i;

    this.dataX = [];
    this.dataY = [];
    for (i = 0; i < data.length; i++) {
        this.dataX[i] = P1.X() + i * h;
        this.dataY[i] = data[i][0];
    }
};

g2.updateDataArray = function() {
    var data = ode();
    var h = N.Value() / 200;
    var i;

    this.dataX = [];
    this.dataY = [];
    for (i = 0; i < data.length; i++) {
        this.dataX[i] = P2.X() + i * h;
        this.dataY[i] = data[i][1];
    }
};
doIt();

Systems of differential equations

Calculus
Display solutions of the ordinary differential equation $$y_1'= f_1(x,y_1,y_2)$$ $$y_2'= f_2(x,y_1,y_2)$$ with initial values $(x_0,c_1)$, $(x_0,c_2)$.
Have also a look at the examples
  • Autocatalytic process
  • Differential equations
  • Epidemiology: SIR model
f1(x,y1,y2)=
f2(x,y1,y2)=
f<sub>1</sub>(x,y1,y2)=<input type="text" id="odeinput1" value="y1+y2"><br />
f<sub>2</sub>(x,y1,y2)=<input type="text" id="odeinput2" value="y2+1"><input type=button value="ok" onclick="doIt()">
// Define the id of your board in BOARDID

var board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-11, 11, 11, -11], keepaspectratio: true });
var N = board.create('slider', [[-7, 9.5], [7, 9.5], [-15, 10, 15]], { name: 'N' });
var P1 = board.create('point', [1, -1], { name: '(x_0,c_1)' });
var line = board.create('line', [function() { return -P1.X(); }, function() { return 1; },
function() { return 0; }], { visible: false });
var P2 = board.create('glider', [1, -0.5, line], { name: '(x_0,c_2)' });

var f;

function doIt() {
    var txt1 = document.getElementById("odeinput1").value;
    var txt2 = document.getElementById("odeinput2").value;

    var snip1 = board.jc.snippet(txt1, true, 'x, y1, y2');
    var snip2 = board.jc.snippet(txt2, true, 'x, y1, y2');
    f = function(x, yy) {
        return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])];
    }
    board.update();
}

function ode() {
    return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(), P2.Y()], [P1.X(), P1.X() + N.Value()], 200, f);
}

var g1 = board.create('curve', [[0], [0]], { strokeColor: 'red', strokeWidth: 2, name: 'y_1', withLabel: false });
var g2 = board.create('curve', [[0], [0]], { strokeColor: 'black', strokeWidth: 2, name: 'y_2', withLabel: false });
g1.updateDataArray = function() {
    var data = ode();
    var h = N.Value() / 200;
    var i;

    this.dataX = [];
    this.dataY = [];
    for (i = 0; i < data.length; i++) {
        this.dataX[i] = P1.X() + i * h;
        this.dataY[i] = data[i][0];
    }
};

g2.updateDataArray = function() {
    var data = ode();
    var h = N.Value() / 200;
    var i;

    this.dataX = [];
    this.dataY = [];
    for (i = 0; i < data.length; i++) {
        this.dataX[i] = P2.X() + i * h;
        this.dataY[i] = data[i][1];
    }
};
doIt();

license

This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License.
Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.