\n c1:<\/label>\n \n f1:<\/label>\n \n c2:<\/label>\n \n f2:<\/label>\n \n <\/p>\n\n","post":"","numboards":1,"description":"This is an example of a _parametric curve plot_. It shows the orbit of a point on a circle rotating on a circle which again rotates on the unit circle. The resulting curve is described by the function\n\n$$\n [0,2\\pi]\u2192{\\mathbb R}^2, \\quad t\\mapsto \\binom{\\cos(t)}{\\sin(t)}+c_1\\binom{\\cos(f_1t)}{\\sin(f_1t)}+c_2\\binom{\\cos(f_2t)}{\\sin(f_2t)}\n$$\nThis is an example of seamless JSXGraph embedding into the web page. The sliders are external HTML sliders.\n\nEpicycloidal curves have been used by the ancient greeks to describe the orbits of the planets, see\n\n- [Giovanni Gallavotti: Quasi periodic motions from Hipparchus to Kolmogorov](http:\/\/arxiv.org\/abs\/chao-dyn\/9907004)\n- [Detailed explanation in German](https:\/\/www.swisseduc.ch\/mathematik\/schwingungen\/docs\/kapitel3.pdf) from [https:\/\/www.swisseduc.ch\/mathematik\/schwingungen\/](https:\/\/www.swisseduc.ch\/mathematik\/schwingungen\/).","dimensions":[{"width":"100%","height":"","aspect-ratio":"1 \/ 1"}],"wider":0,"license":{"id":1,"identifier":"CC BY 4.0","title":"Creative Commons Attribution 4.0 International","free":"- Share\r\n- Adapt","restrictions":"- Attribution\r\n- No additional restrictions","with_attribution":1,"link":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/","image":"https:\/\/i.creativecommons.org\/l\/by\/4.0\/88x31.png","rank":0},"timestamp":"2023-01-25 08:16:22","visible":1,"tags":[{"id":136,"alias":"circles","name":"Circles"},{"id":113,"alias":"curves","name":"Curves"},{"id":121,"alias":"geometry","name":"Geometry"},{"id":103,"alias":"physics","name":"Physics"}],"tag_ids":[136,113,121,103],"refers_to":[{"id":10042,"alias":"epicycloid-circles-rotating-on-circles-in-opposite-direction","name":"Epicycloid: circles rotating on circles in opposite direction","symmetrical":1},{"id":10108,"alias":"epicycloid-export-svg","name":"Epicycloid: export SVG","symmetrical":1}],"refers_to_ids":[10042,10108],"authors":[],"authors_ids":[],"unique_ids":["jxgbox-6772d339aef1b"],"code_display":"\/\/ Define the id of your board in BOARDID\n\nconst board = JXG.JSXGraph.initBoard(BOARDID, {\n boundingbox: [-2.5, 2.5, 2.5, -2.5],\n keepaspectratio: true\n});\nvar c1 = 0.6;\nvar c2 = 0.0;\nvar f1 = 7;\nvar f2 = 17;\nvar c = board.create('curve', [\n (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t),\n (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t),\n 0, 2.02 * Math.PI\n], {\n strokeWidth: 2\n});","code_execute_html":"<\/div>\n Share Epicycloid: circles rotating on circles Show plain example JSFiddle Link QR code Copy QR Download QR iFrame <iframe src="https://jsxgraph.org/share/iframe/epicycloid-circles-rotating-on-circles" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Epicycloid: circles rotating on circles" allowfullscreen ></iframe> <iframe src="https://jsxgraph.org/share/iframe/epicycloid-circles-rotating-on-circles" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Epicycloid: circles rotating on circles" allowfullscreen ></iframe> This code has to HTML <p> <label for="c1">c1:</label> <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="60" oninput="c1 = this.value*0.01; board.update();" /><br/> <label for="f1">f1:</label> <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="7" oninput="f1 = this.value; board.update();" /><br/> <label for="c2">c2:</label> <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="0" oninput="c2 = this.value*0.01; board.updateQuality = board.BOARD_QUALITY_HIGH; board.update();" /><br/> <label for="f2">f2:</label> <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="17" oninput="f2 = this.value; board.update();" /> </p> <div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); </script> <p> <label for="c1">c1:</label> <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="60" oninput="c1 = this.value*0.01; board.update();" /><br/> <label for="f1">f1:</label> <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="7" oninput="f1 = this.value; board.update();" /><br/> <label for="c2">c2:</label> <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="0" oninput="c2 = this.value*0.01; board.updateQuality = board.BOARD_QUALITY_HIGH; board.update();" /><br/> <label for="f2">f2:</label> <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="17" oninput="f2 = this.value; board.update();" /> </p> <div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); </script> JavaScript /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); Download Print Epicycloid: circles rotating on circles Circles Curves Geometry Physics This is an example of a _parametric curve plot_. It shows the orbit of a point on a circle rotating on a circle which again rotates on the unit circle. The resulting curve is described by the function $$ [0,2\pi]→{\mathbb R}^2, \quad t\mapsto \binom{\cos(t)}{\sin(t)}+c_1\binom{\cos(f_1t)}{\sin(f_1t)}+c_2\binom{\cos(f_2t)}{\sin(f_2t)} $$ This is an example of seamless JSXGraph embedding into the web page. The sliders are external HTML sliders. Epicycloidal curves have been used by the ancient greeks to describe the orbits of the planets, see - [Giovanni Gallavotti: Quasi periodic motions from Hipparchus to Kolmogorov](http://arxiv.org/abs/chao-dyn/9907004) - [Detailed explanation in German](https://www.swisseduc.ch/mathematik/schwingungen/docs/kapitel3.pdf) from [https://www.swisseduc.ch/mathematik/schwingungen/](https://www.swisseduc.ch/mathematik/schwingungen/). Have also a look at the examples Epicycloid: circles rotating on circles in opposite direction Epicycloid: export SVG Web references Epicycloid at wikipedia Epicycloid at Wolfram c1: f1: c2: f2: <p> <label for="c1">c1:</label> <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="60" oninput="c1 = this.value*0.01; board.update();" /><br/> <label for="f1">f1:</label> <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="7" oninput="f1 = this.value; board.update();" /><br/> <label for="c2">c2:</label> <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="0" oninput="c2 = this.value*0.01; board.updateQuality = board.BOARD_QUALITY_HIGH; board.update();" /><br/> <label for="f2">f2:</label> <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="17" oninput="f2 = this.value; board.update();" /> </p> <p> <label for="c1">c1:</label> <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="60" oninput="c1 = this.value*0.01; board.update();" /><br/> <label for="f1">f1:</label> <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="7" oninput="f1 = this.value; board.update();" /><br/> <label for="c2">c2:</label> <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="0" oninput="c2 = this.value*0.01; board.updateQuality = board.BOARD_QUALITY_HIGH; board.update();" /><br/> <label for="f2">f2:</label> <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="17" oninput="f2 = this.value; board.update();" /> </p> // Define the id of your board in BOARDID const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); // Define the id of your board in BOARDID const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); This example is licensed under a Creative Commons Attribution 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.
<iframe src="https://jsxgraph.org/share/iframe/epicycloid-circles-rotating-on-circles" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Epicycloid: circles rotating on circles" allowfullscreen ></iframe>
<p> <label for="c1">c1:</label> <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="60" oninput="c1 = this.value*0.01; board.update();" /><br/> <label for="f1">f1:</label> <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="7" oninput="f1 = this.value; board.update();" /><br/> <label for="c2">c2:</label> <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="0" oninput="c2 = this.value*0.01; board.updateQuality = board.BOARD_QUALITY_HIGH; board.update();" /><br/> <label for="f2">f2:</label> <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="17" oninput="f2 = this.value; board.update();" /> </p> <div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 }); </script>
/* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 });
c1: f1: c2: f2:
<p> <label for="c1">c1:</label> <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="60" oninput="c1 = this.value*0.01; board.update();" /><br/> <label for="f1">f1:</label> <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="7" oninput="f1 = this.value; board.update();" /><br/> <label for="c2">c2:</label> <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" min="0" max="100" value="0" oninput="c2 = this.value*0.01; board.updateQuality = board.BOARD_QUALITY_HIGH; board.update();" /><br/> <label for="f2">f2:</label> <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" min="1" max="100" value="17" oninput="f2 = this.value; board.update();" /> </p>
// Define the id of your board in BOARDID const board = JXG.JSXGraph.initBoard(BOARDID, { boundingbox: [-2.5, 2.5, 2.5, -2.5], keepaspectratio: true }); var c1 = 0.6; var c2 = 0.0; var f1 = 7; var f2 = 17; var c = board.create('curve', [ (t) => Math.cos(t) + c1 * Math.cos(f1 * t) + c2 * Math.cos(f2 * t), (t) => Math.sin(t) + c1 * Math.sin(f1 * t) + c2 * Math.sin(f2 * t), 0, 2.02 * Math.PI ], { strokeWidth: 2 });
This example is licensed under a Creative Commons Attribution 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.