<iframe src="https://jsxgraph.org/share/iframe/dual-lattice" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Dual lattice" allowfullscreen ></iframe>
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'board-0'; const board = JXG.JSXGraph.initBoard(BOARDID, {boundingbox: [-5, 5, 5, -5], axis:false}); // Primal basis vectors var b1 = board.create('point', [4,0], {size:6, name:'b_1', color:'blue', snaptogrid: true}), b2 = board.create('point', [3,3], {size:6, name:'b_2', color:'blue', snaptogrid: true}), v1 = board.create('arrow', [[0,0], b1], {strokeColor: 'black', fixed: true}), v2 = board.create('arrow', [[0,0], b2], {strokeColor: 'red', fixed: true}), w1, w2; // Plot lattice points for (let i = -5; i < 6; i++) { for (let j = -5; j < 6; j++) { if (!(i == 1 && j == 0) && !(i == 0 && j == 1)) { board.create('point', [ () => i * b1.X() + j * b2.X(), () => i * b1.Y() + j * b2.Y() ], {name:'', withLabel: false, size:2}); } } } // Dual basis vectors w1 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [b2.Y() / num, -b2.X() / num]; }], {strokeColor: 'black', name:"b_1'", withLabel:true, label:{position:'rt'}}); w2 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [-b1.Y() / num, b1.X() / num]; }], {strokeColor: 'red', name:"b_2'", withLabel:true, label:{position:'rt'}}); </script>
/* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! const board = JXG.JSXGraph.initBoard(BOARDID, {boundingbox: [-5, 5, 5, -5], axis:false}); // Primal basis vectors var b1 = board.create('point', [4,0], {size:6, name:'b_1', color:'blue', snaptogrid: true}), b2 = board.create('point', [3,3], {size:6, name:'b_2', color:'blue', snaptogrid: true}), v1 = board.create('arrow', [[0,0], b1], {strokeColor: 'black', fixed: true}), v2 = board.create('arrow', [[0,0], b2], {strokeColor: 'red', fixed: true}), w1, w2; // Plot lattice points for (let i = -5; i < 6; i++) { for (let j = -5; j < 6; j++) { if (!(i == 1 && j == 0) && !(i == 0 && j == 1)) { board.create('point', [ () => i * b1.X() + j * b2.X(), () => i * b1.Y() + j * b2.Y() ], {name:'', withLabel: false, size:2}); } } } // Dual basis vectors w1 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [b2.Y() / num, -b2.X() / num]; }], {strokeColor: 'black', name:"b_1'", withLabel:true, label:{position:'rt'}}); w2 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [-b1.Y() / num, b1.X() / num]; }], {strokeColor: 'red', name:"b_2'", withLabel:true, label:{position:'rt'}});
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Dual lattice" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false"> /* This example is licensed under a Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits. */ const board = JXG.JSXGraph.initBoard(BOARDID, {boundingbox: [-5, 5, 5, -5], axis:false}); // Primal basis vectors var b1 = board.create('point', [4,0], {size:6, name:'b_1', color:'blue', snaptogrid: true}), b2 = board.create('point', [3,3], {size:6, name:'b_2', color:'blue', snaptogrid: true}), v1 = board.create('arrow', [[0,0], b1], {strokeColor: 'black', fixed: true}), v2 = board.create('arrow', [[0,0], b2], {strokeColor: 'red', fixed: true}), w1, w2; // Plot lattice points for (let i = -5; i < 6; i++) { for (let j = -5; j < 6; j++) { if (!(i == 1 && j == 0) && !(i == 0 && j == 1)) { board.create('point', [ () => i * b1.X() + j * b2.X(), () => i * b1.Y() + j * b2.Y() ], {name:'', withLabel: false, size:2}); } } } // Dual basis vectors w1 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [b2.Y() / num, -b2.X() / num]; }], {strokeColor: 'black', name:"b_1'", withLabel:true, label:{position:'rt'}}); w2 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [-b1.Y() / num, b1.X() / num]; }], {strokeColor: 'red', name:"b_2'", withLabel:true, label:{position:'rt'}}); </jsxgraph>
// Define the id of your board in BOARDID const board = JXG.JSXGraph.initBoard(BOARDID, {boundingbox: [-5, 5, 5, -5], axis:false}); // Primal basis vectors var b1 = board.create('point', [4,0], {size:6, name:'b_1', color:'blue', snaptogrid: true}), b2 = board.create('point', [3,3], {size:6, name:'b_2', color:'blue', snaptogrid: true}), v1 = board.create('arrow', [[0,0], b1], {strokeColor: 'black', fixed: true}), v2 = board.create('arrow', [[0,0], b2], {strokeColor: 'red', fixed: true}), w1, w2; // Plot lattice points for (let i = -5; i < 6; i++) { for (let j = -5; j < 6; j++) { if (!(i == 1 && j == 0) && !(i == 0 && j == 1)) { board.create('point', [ () => i * b1.X() + j * b2.X(), () => i * b1.Y() + j * b2.Y() ], {name:'', withLabel: false, size:2}); } } } // Dual basis vectors w1 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [b2.Y() / num, -b2.X() / num]; }], {strokeColor: 'black', name:"b_1'", withLabel:true, label:{position:'rt'}}); w2 = board.create('arrow', [[0,0], function() { var num = b1.X() * b2.Y() - b2.X() * b1.Y(); return [-b1.Y() / num, b1.X() / num]; }], {strokeColor: 'red', name:"b_2'", withLabel:true, label:{position:'rt'}});
This example is licensed under a Creative Commons Attribution 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology in the credits.