Visual e-Assessment with JSXGraph in Calculus

Wigand Rathmann, Alfred Wassermann

FAU, Germany, University of Bayreuth, Germany

11.03.2024

JSXGraph and STACK used in MA

IDIAM and multivariate analysis as a trigger for 3D development in JSXGraph. Some topics in engineering mathematics require the ability to visualise objects in 2D or 3D space.

- » Focus on integration domains and extrema of functions in 2D
 - » Coordinate transformations (polar coordinates, spherical coordinates)
 - » Calculus of functions with two variables (negative definite Hessian)
 - » Visualization of vector fields in 3D (curl of a vector field)

Ongoing ideas

- » Work inspired by IDIAM
 - » Application to implicit curves: constraint optimisation or Lagrangian multiplier role
 - » Slope fields and trajectories

Examples available at the IDIAM Page

JSXGraph 3D development and most examples have been funded by ERASMUS+ "Interactive Digital Assessments in Mathematics".

Integration in 2D/3D

Given $G \subset \mathbb{R}^n$ (n=2,3). The integral wrt. G and a function $f:\mathbb{R}^n \to \mathbb{R}$ integrable on G is denoted as

$$\int_C f(\mathbf{x}) \, \mathsf{d}G.$$

How to compute this?

G may given by two functions

$$G = \{(x, y) \in \mathbb{R}^2 \mid a < x < b, y_2(x) < y < y_1(x)\}\$$

then

$$\int_{G} f(\mathbf{x}) \, \mathrm{d}G = \int_{a}^{b} \int_{y_{2}(x)}^{y_{1}(x)} f(x, y) \, \mathrm{d}y \mathrm{d}x.$$

Recover the functions y_1, y_2 from a diagram is demanding for some students.

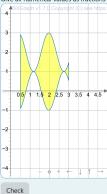
Given is a region of type

Question is missing tests or variants.

$$G=\{(x,y)\in\mathbb{R}^2\,|\,a\leqslant x\leqslant b,\,y_2(x)\leqslant y\leqslant y_1(x)\}$$

as shown in the diagram. Determine the interval [a,b] and the expressions for the graphs of functions y_1 and y_2 .

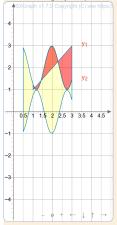
Give all numerical values as fractions instead of decimal numbers e.g. 1/2 instead of 0.5.



[a,b]= $y_1(x)=$ $y_2(x)=$

Students view

This diagram shows the domain you have entered and the domain asked for. The given area is colored yellow, the red area results from your answer. The functions y_1 and y_2 have been labeled according to your input.



The value you gave for x_1 is not correct.

Nice, you found the correct value for $x_2!$ Good job!

Check whether you did anything different here than for $oldsymbol{x}_1$ and try again.

Feedback view

Integration

The **Transformation Theorem** is widely used in integration.

Given two sets $G\subset \mathbb{R}^n$ and $H\subset \mathbb{R}^n$ im \mathbb{R}^n and a one-to-one mapping $T:H\to G$

$$T(\mathbf{u}) := \mathbf{x}(\mathbf{u}).$$

T is continuously differentiable and $\det(J_T(u,v,w)) \neq 0$ on H. Then

$$\int_{G} f(\mathbf{x}) \, d\mathbf{x} = \int_{H} f(\mathbf{x}(\mathbf{u})) |\det J_{T}(\mathbf{u})| \, d\mathbf{u}.$$

Integration in 2D (Polar coordinate)

The introductory example in 2D integration are the Polar Coordinates:

$$T:[0,\infty)\times[0,2\pi)\to\mathbb{R}^2\text{ with }\begin{pmatrix}r\\\phi\end{pmatrix}\mapsto\begin{pmatrix}r\cos(\phi)\\r\sin(\phi)\end{pmatrix}$$

Given is a 2D area with polar geometry. It is defined by the intervals for each of the polar coordinates r and ϕ . Here r is the radial coordinate and ϕ is the angle starting at the x-axis oriented counterclockwise with $\phi \in [0, 2\pi]$.

Reconstruct the intervals that define the given area by matching the areas using the cartesian coordinate system.

Write the interval in the form $r \in [r1, r2]$ and $\phi \in [phi1, phi2]$, e.g. [1/2, 2] and [1/2*p1, 2*p1].

Integration in 3D

Spherical coordinates are very challanging for the students. The question: Describe the set ${\cal M}$ given by

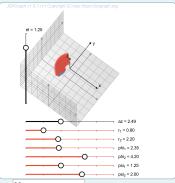
$$M:=\{\mathbf{x}\in\mathbb{R}^3\,:\,\|\mathbf{x}\|_2\leqslant 1,\,x_1,x_2,x_3<0\}$$

in spherical coordinates could only be solved by a few students.

Spherical Coordinates Given is a 3D volume with spherical geometry, it is defined by the intervals for each of the spherical coordinates r, ϕ Tool zum Nachbesseen der Frage | • Es hellen Tests oder Varlanteen.

Given is a 3D volume with spherical geometry. It is defined by the intervals for each of the spherical coordinates r, ϕ foot zum Nachbessem der Frage I Ψ . Es them Tests oder Variantes and ψ , Here r is the radial coordinate and ϕ is the azimuthal angle starting at the x-axis oriented counterclockwise with $\phi \in [0, 2\pi]$. Lastly, ψ is the polar angle measured from the x-axis with $\psi \in [0, \pi]$.

Reconstruct the intervals that define the given volume.



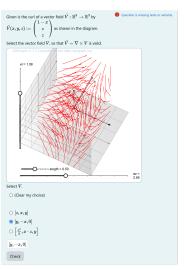
$r_1 =$	0.8
$r_2 =$	2.2
$\phi_1 =$	2.35
$\phi_2 =$	4.2
$\psi_1 =$	1.25
$\psi_2 =$	

Spherical Coordinates

Feedback view

Curl

The curl of a vector field $V : \mathbb{R}^3 \to \mathbb{R}^3$ is just $\operatorname{curl} V = \nabla \times V$. It is quite strong to get an idea of it.



Curl

X Incorrect answer.

The entries underlined in red below are those that are incorrect.

$$\left[\underline{y}, \underline{-x}, \underline{0}\right]$$

You did not select the correct vector field. The vector field given is the curl of the wanted vector field.

Marks for this submission: 0.00/1.00.

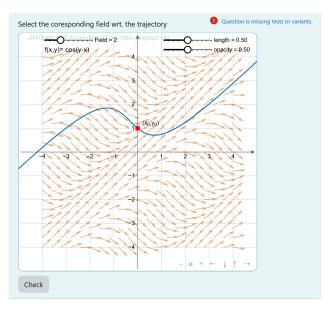
Feedback view

Slopefield and Trajectory

For a given ODE such as y'(x)=f(x,y(x)) with initial value $y(x_0)=y_0$ one can draw as the trajectory of the solution as the slope field given by $F(x,y)=\begin{pmatrix} 1 \\ f(x,y) \end{pmatrix}$.

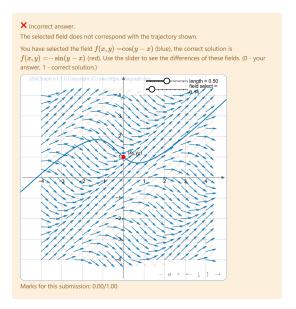
The idea is to find the corresponding slope field for a given trajectory. JSXGraph provides the necessary tools, such as Runge-Kutta methods and the *slopefield* object.

ODE



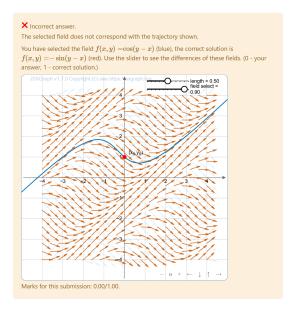
Students view

ODE



Feedback view 1

ODE



Feedback view 2

Constrained Optimisation and Lagrange Multiplier

The easiest constraint optimization problem in \mathbb{R}^n is

The necessary optimality condition

f,h are C^1 in a neighbourhood of \mathbf{x}_0 and $\nabla h(\mathbf{x}_0) \neq 0$ and \mathbf{x}_0 minimizes f subjected to $h(\mathbf{x}) = 0$.

Then there exists a real number $\lambda \in \mathbb{R}$ with

$$\nabla f(\mathbf{x}) + \lambda \nabla h(\mathbf{x}) = 0.$$

Necessary optimality condition seen geometrically

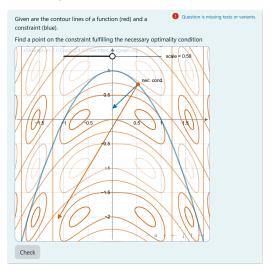
»
$$h(\mathbf{x}) = 0$$
 in JSXGraph 2D

A glider on a curve given implicitly by $h(\mathbf{x}) = 0$.

»
$$\nabla f(\mathbf{x}) + \lambda \nabla h(\mathbf{x}) = 0$$

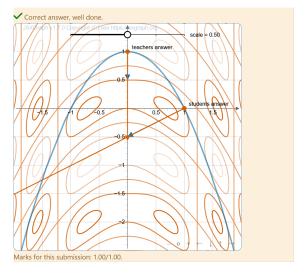
Two parallel vectors.

Lagrange Multiplier



Students view

Lagrange Multiplier



Feedback view

Transfer data: STACK to JSXGraph and back

» Numbers

```
tFinal = {#tFinalset#};
```

» strings, like function terms

```
funtxt = '{#fieldSelected #}';
fun = board.jc.snippet(frktxt, true, 'x');
```

The last line will create a JS function from the string stored in funtxt (see JSXGraph documentation JessieCode#snippet)

Sometimes it is needed to process the string using the *replace method*.

» Transfer of a list of strings can be done using the helper function JXG.stack2jsxgraph, e.g.

```
vecOfFields =

JXG. stack2jsxgraph('{#listOfFields#}');
```

Strings can processed by e.g. jc.snippet().

Why JSXGraph?

- » streamline the applets
- » fits my thinking coming from numerical math

demanding for developer

- » documentation of the code for reuse
- » minimizing the need to adapt code in JSXGraph to create modified questions
- » initialize via questions variables