1 /*
  2     Copyright 2008-2023
  3         Matthias Ehmann,
  4         Michael Gerhaeuser,
  5         Carsten Miller,
  6         Bianca Valentin,
  7         Alfred Wassermann,
  8         Peter Wilfahrt
  9 
 10     This file is part of JSXGraph.
 11 
 12     JSXGraph is free software dual licensed under the GNU LGPL or MIT License.
 13 
 14     You can redistribute it and/or modify it under the terms of the
 15 
 16       * GNU Lesser General Public License as published by
 17         the Free Software Foundation, either version 3 of the License, or
 18         (at your option) any later version
 19       OR
 20       * MIT License: https://github.com/jsxgraph/jsxgraph/blob/master/LICENSE.MIT
 21 
 22     JSXGraph is distributed in the hope that it will be useful,
 23     but WITHOUT ANY WARRANTY; without even the implied warranty of
 24     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 25     GNU Lesser General Public License for more details.
 26 
 27     You should have received a copy of the GNU Lesser General Public License and
 28     the MIT License along with JSXGraph. If not, see <https://www.gnu.org/licenses/>
 29     and <https://opensource.org/licenses/MIT/>.
 30  */
 31 
 32 /*global JXG: true, define: true*/
 33 /*jslint nomen: true, plusplus: true*/
 34 /*eslint no-loss-of-precision: off */
 35 
 36 /**
 37  * @fileoverview In this file the namespace Math.Numerics is defined, which holds numerical
 38  * algorithms for solving linear equations etc.
 39  */
 40 
 41 import JXG from "../jxg";
 42 import Type from "../utils/type";
 43 import Env from "../utils/env";
 44 import Mat from "./math";
 45 
 46 // Predefined butcher tableaus for the common Runge-Kutta method (fourth order), Heun method (second order), and Euler method (first order).
 47 var predefinedButcher = {
 48     rk4: {
 49         s: 4,
 50         A: [
 51             [0, 0, 0, 0],
 52             [0.5, 0, 0, 0],
 53             [0, 0.5, 0, 0],
 54             [0, 0, 1, 0]
 55         ],
 56         b: [1.0 / 6.0, 1.0 / 3.0, 1.0 / 3.0, 1.0 / 6.0],
 57         c: [0, 0.5, 0.5, 1]
 58     },
 59     heun: {
 60         s: 2,
 61         A: [
 62             [0, 0],
 63             [1, 0]
 64         ],
 65         b: [0.5, 0.5],
 66         c: [0, 1]
 67     },
 68     euler: {
 69         s: 1,
 70         A: [[0]],
 71         b: [1],
 72         c: [0]
 73     }
 74 };
 75 
 76 /**
 77  * The JXG.Math.Numerics namespace holds numerical algorithms, constants, and variables.
 78  * @name JXG.Math.Numerics
 79  * @exports Mat.Numerics as JXG.Math.Numerics
 80  * @namespace
 81  */
 82 Mat.Numerics = {
 83     //JXG.extend(Mat.Numerics, /** @lends JXG.Math.Numerics */ {
 84     /**
 85      * Solves a system of linear equations given by A and b using the Gauss-Jordan-elimination.
 86      * The algorithm runs in-place. I.e. the entries of A and b are changed.
 87      * @param {Array} A Square matrix represented by an array of rows, containing the coefficients of the lineare equation system.
 88      * @param {Array} b A vector containing the linear equation system's right hand side.
 89      * @throws {Error} If a non-square-matrix is given or if b has not the right length or A's rank is not full.
 90      * @returns {Array} A vector that solves the linear equation system.
 91      * @memberof JXG.Math.Numerics
 92      */
 93     Gauss: function (A, b) {
 94         var i,
 95             j,
 96             k,
 97             // copy the matrix to prevent changes in the original
 98             Acopy,
 99             // solution vector, to prevent changing b
100             x,
101             eps = Mat.eps,
102             // number of columns of A
103             n = A.length > 0 ? A[0].length : 0;
104 
105         if (n !== b.length || n !== A.length) {
106             throw new Error(
107                 "JXG.Math.Numerics.Gauss: Dimensions don't match. A must be a square matrix and b must be of the same length as A."
108             );
109         }
110 
111         // initialize solution vector
112         Acopy = [];
113         x = b.slice(0, n);
114 
115         for (i = 0; i < n; i++) {
116             Acopy[i] = A[i].slice(0, n);
117         }
118 
119         // Gauss-Jordan-elimination
120         for (j = 0; j < n; j++) {
121             for (i = n - 1; i > j; i--) {
122                 // Is the element which is to eliminate greater than zero?
123                 if (Math.abs(Acopy[i][j]) > eps) {
124                     // Equals pivot element zero?
125                     if (Math.abs(Acopy[j][j]) < eps) {
126                         // At least numerically, so we have to exchange the rows
127                         Type.swap(Acopy, i, j);
128                         Type.swap(x, i, j);
129                     } else {
130                         // Saves the L matrix of the LR-decomposition. unnecessary.
131                         Acopy[i][j] /= Acopy[j][j];
132                         // Transform right-hand-side b
133                         x[i] -= Acopy[i][j] * x[j];
134 
135                         // subtract the multiple of A[i][j] / A[j][j] of the j-th row from the i-th.
136                         for (k = j + 1; k < n; k++) {
137                             Acopy[i][k] -= Acopy[i][j] * Acopy[j][k];
138                         }
139                     }
140                 }
141             }
142 
143             // The absolute values of all coefficients below the j-th row in the j-th column are smaller than JXG.Math.eps.
144             if (Math.abs(Acopy[j][j]) < eps) {
145                 throw new Error(
146                     "JXG.Math.Numerics.Gauss(): The given matrix seems to be singular."
147                 );
148             }
149         }
150 
151         this.backwardSolve(Acopy, x, true);
152 
153         return x;
154     },
155 
156     /**
157      * Solves a system of linear equations given by the right triangular matrix R and vector b.
158      * @param {Array} R Right triangular matrix represented by an array of rows. All entries a_(i,j) with i < j are ignored.
159      * @param {Array} b Right hand side of the linear equation system.
160      * @param {Boolean} [canModify=false] If true, the right hand side vector is allowed to be changed by this method.
161      * @returns {Array} An array representing a vector that solves the system of linear equations.
162      * @memberof JXG.Math.Numerics
163      */
164     backwardSolve: function (R, b, canModify) {
165         var x, m, n, i, j;
166 
167         if (canModify) {
168             x = b;
169         } else {
170             x = b.slice(0, b.length);
171         }
172 
173         // m: number of rows of R
174         // n: number of columns of R
175         m = R.length;
176         n = R.length > 0 ? R[0].length : 0;
177 
178         for (i = m - 1; i >= 0; i--) {
179             for (j = n - 1; j > i; j--) {
180                 x[i] -= R[i][j] * x[j];
181             }
182             x[i] /= R[i][i];
183         }
184 
185         return x;
186     },
187 
188     /**
189      *  Gauss-Bareiss algorithm to compute the
190      *  determinant of matrix without fractions.
191      *  See Henri Cohen, "A Course in Computational
192      *  Algebraic Number Theory (Graduate texts
193      *  in mathematics; 138)", Springer-Verlag,
194      *  ISBN 3-540-55640-0 / 0-387-55640-0
195      *  Third, Corrected Printing 1996
196      *  "Algorithm 2.2.6", pg. 52-53
197      *
198      * @param {Array} mat Matrix
199      * @returns Number
200      * @private
201      * @memberof JXG.Math.Numerics
202      */
203     gaussBareiss: function (mat) {
204         var k, c, s,
205             i, j, p,
206             n, M, t,
207             eps = Mat.eps;
208 
209         n = mat.length;
210 
211         if (n <= 0) {
212             return 0;
213         }
214 
215         if (mat[0].length < n) {
216             n = mat[0].length;
217         }
218 
219         // Copy the input matrix to M
220         M = [];
221 
222         for (i = 0; i < n; i++) {
223             M[i] = mat[i].slice(0, n);
224         }
225 
226         c = 1;
227         s = 1;
228 
229         for (k = 0; k < n - 1; k++) {
230             p = M[k][k];
231 
232             // Pivot step
233             if (Math.abs(p) < eps) {
234                 for (i = k + 1; i < n; i++) {
235                     if (Math.abs(M[i][k]) >= eps) {
236                         break;
237                     }
238                 }
239 
240                 // No nonzero entry found in column k -> det(M) = 0
241                 if (i === n) {
242                     return 0.0;
243                 }
244 
245                 // swap row i and k partially
246                 for (j = k; j < n; j++) {
247                     t = M[i][j];
248                     M[i][j] = M[k][j];
249                     M[k][j] = t;
250                 }
251                 s = -s;
252                 p = M[k][k];
253             }
254 
255             // Main step
256             for (i = k + 1; i < n; i++) {
257                 for (j = k + 1; j < n; j++) {
258                     t = p * M[i][j] - M[i][k] * M[k][j];
259                     M[i][j] = t / c;
260                 }
261             }
262 
263             c = p;
264         }
265 
266         return s * M[n - 1][n - 1];
267     },
268 
269     /**
270      * Computes the determinant of a square nxn matrix with the
271      * Gauss-Bareiss algorithm.
272      * @param {Array} mat Matrix.
273      * @returns {Number} The determinant pf the matrix mat.
274      *                   The empty matrix returns 0.
275      * @memberof JXG.Math.Numerics
276      */
277     det: function (mat) {
278         var n = mat.length;
279 
280         if (n === 2 && mat[0].length === 2) {
281             return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
282         }
283 
284         return this.gaussBareiss(mat);
285     },
286 
287     /**
288      * Compute the Eigenvalues and Eigenvectors of a symmetric 3x3 matrix with the Jacobi method
289      * Adaption of a FORTRAN program by Ed Wilson, Dec. 25, 1990
290      * @param {Array} Ain A symmetric 3x3 matrix.
291      * @returns {Array} [A,V] the matrices A and V. The diagonal of A contains the Eigenvalues, V contains the Eigenvectors.
292      * @memberof JXG.Math.Numerics
293      */
294     Jacobi: function (Ain) {
295         var i,
296             j,
297             k,
298             aa,
299             si,
300             co,
301             tt,
302             ssum,
303             amax,
304             eps = Mat.eps * Mat.eps,
305             sum = 0.0,
306             n = Ain.length,
307             V = [
308                 [0, 0, 0],
309                 [0, 0, 0],
310                 [0, 0, 0]
311             ],
312             A = [
313                 [0, 0, 0],
314                 [0, 0, 0],
315                 [0, 0, 0]
316             ],
317             nloops = 0;
318 
319         // Initialization. Set initial Eigenvectors.
320         for (i = 0; i < n; i++) {
321             for (j = 0; j < n; j++) {
322                 V[i][j] = 0.0;
323                 A[i][j] = Ain[i][j];
324                 sum += Math.abs(A[i][j]);
325             }
326             V[i][i] = 1.0;
327         }
328 
329         // Trivial problems
330         if (n === 1) {
331             return [A, V];
332         }
333 
334         if (sum <= 0.0) {
335             return [A, V];
336         }
337 
338         sum /= n * n;
339 
340         // Reduce matrix to diagonal
341         do {
342             ssum = 0.0;
343             amax = 0.0;
344             for (j = 1; j < n; j++) {
345                 for (i = 0; i < j; i++) {
346                     // Check if A[i][j] is to be reduced
347                     aa = Math.abs(A[i][j]);
348 
349                     if (aa > amax) {
350                         amax = aa;
351                     }
352 
353                     ssum += aa;
354 
355                     if (aa >= eps) {
356                         // calculate rotation angle
357                         aa = Math.atan2(2.0 * A[i][j], A[i][i] - A[j][j]) * 0.5;
358                         si = Math.sin(aa);
359                         co = Math.cos(aa);
360 
361                         // Modify 'i' and 'j' columns
362                         for (k = 0; k < n; k++) {
363                             tt = A[k][i];
364                             A[k][i] = co * tt + si * A[k][j];
365                             A[k][j] = -si * tt + co * A[k][j];
366                             tt = V[k][i];
367                             V[k][i] = co * tt + si * V[k][j];
368                             V[k][j] = -si * tt + co * V[k][j];
369                         }
370 
371                         // Modify diagonal terms
372                         A[i][i] = co * A[i][i] + si * A[j][i];
373                         A[j][j] = -si * A[i][j] + co * A[j][j];
374                         A[i][j] = 0.0;
375 
376                         // Make 'A' matrix symmetrical
377                         for (k = 0; k < n; k++) {
378                             A[i][k] = A[k][i];
379                             A[j][k] = A[k][j];
380                         }
381                         // A[i][j] made zero by rotation
382                     }
383                 }
384             }
385             nloops += 1;
386         } while (Math.abs(ssum) / sum > eps && nloops < 2000);
387 
388         return [A, V];
389     },
390 
391     /**
392      * Calculates the integral of function f over interval using Newton-Cotes-algorithm.
393      * @param {Array} interval The integration interval, e.g. [0, 3].
394      * @param {function} f A function which takes one argument of type number and returns a number.
395      * @param {Object} [config] The algorithm setup. Accepted properties are number_of_nodes of type number and integration_type
396      * with value being either 'trapez', 'simpson', or 'milne'.
397      * @param {Number} [config.number_of_nodes=28]
398      * @param {String} [config.integration_type='milne'] Possible values are 'milne', 'simpson', 'trapez'
399      * @returns {Number} Integral value of f over interval
400      * @throws {Error} If config.number_of_nodes doesn't match config.integration_type an exception is thrown. If you want to use
401      * simpson rule respectively milne rule config.number_of_nodes must be dividable by 2 respectively 4.
402      * @example
403      * function f(x) {
404      *   return x*x;
405      * }
406      *
407      * // calculates integral of <tt>f</tt> from 0 to 2.
408      * var area1 = JXG.Math.Numerics.NewtonCotes([0, 2], f);
409      *
410      * // the same with an anonymous function
411      * var area2 = JXG.Math.Numerics.NewtonCotes([0, 2], function (x) { return x*x; });
412      *
413      * // use trapez rule with 16 nodes
414      * var area3 = JXG.Math.Numerics.NewtonCotes([0, 2], f,
415      *                                   {number_of_nodes: 16, integration_type: 'trapez'});
416      * @memberof JXG.Math.Numerics
417      */
418     NewtonCotes: function (interval, f, config) {
419         var evaluation_point,
420             i,
421             number_of_intervals,
422             integral_value = 0.0,
423             number_of_nodes =
424                 config && Type.isNumber(config.number_of_nodes) ? config.number_of_nodes : 28,
425             available_types = { trapez: true, simpson: true, milne: true },
426             integration_type =
427                 config &&
428                     config.integration_type &&
429                     available_types.hasOwnProperty(config.integration_type) &&
430                     available_types[config.integration_type]
431                     ? config.integration_type
432                     : "milne",
433             step_size = (interval[1] - interval[0]) / number_of_nodes;
434 
435         switch (integration_type) {
436             case "trapez":
437                 integral_value = (f(interval[0]) + f(interval[1])) * 0.5;
438                 evaluation_point = interval[0];
439 
440                 for (i = 0; i < number_of_nodes - 1; i++) {
441                     evaluation_point += step_size;
442                     integral_value += f(evaluation_point);
443                 }
444 
445                 integral_value *= step_size;
446                 break;
447             case "simpson":
448                 if (number_of_nodes % 2 > 0) {
449                     throw new Error(
450                         "JSXGraph:  INT_SIMPSON requires config.number_of_nodes dividable by 2."
451                     );
452                 }
453 
454                 number_of_intervals = number_of_nodes / 2.0;
455                 integral_value = f(interval[0]) + f(interval[1]);
456                 evaluation_point = interval[0];
457 
458                 for (i = 0; i < number_of_intervals - 1; i++) {
459                     evaluation_point += 2.0 * step_size;
460                     integral_value += 2.0 * f(evaluation_point);
461                 }
462 
463                 evaluation_point = interval[0] - step_size;
464 
465                 for (i = 0; i < number_of_intervals; i++) {
466                     evaluation_point += 2.0 * step_size;
467                     integral_value += 4.0 * f(evaluation_point);
468                 }
469 
470                 integral_value *= step_size / 3.0;
471                 break;
472             default:
473                 if (number_of_nodes % 4 > 0) {
474                     throw new Error(
475                         "JSXGraph: Error in INT_MILNE: config.number_of_nodes must be a multiple of 4"
476                     );
477                 }
478 
479                 number_of_intervals = number_of_nodes * 0.25;
480                 integral_value = 7.0 * (f(interval[0]) + f(interval[1]));
481                 evaluation_point = interval[0];
482 
483                 for (i = 0; i < number_of_intervals - 1; i++) {
484                     evaluation_point += 4.0 * step_size;
485                     integral_value += 14.0 * f(evaluation_point);
486                 }
487 
488                 evaluation_point = interval[0] - 3.0 * step_size;
489 
490                 for (i = 0; i < number_of_intervals; i++) {
491                     evaluation_point += 4.0 * step_size;
492                     integral_value +=
493                         32.0 * (f(evaluation_point) + f(evaluation_point + 2 * step_size));
494                 }
495 
496                 evaluation_point = interval[0] - 2.0 * step_size;
497 
498                 for (i = 0; i < number_of_intervals; i++) {
499                     evaluation_point += 4.0 * step_size;
500                     integral_value += 12.0 * f(evaluation_point);
501                 }
502 
503                 integral_value *= (2.0 * step_size) / 45.0;
504         }
505         return integral_value;
506     },
507 
508     /**
509      * Calculates the integral of function f over interval using Romberg iteration.
510      * @param {Array} interval The integration interval, e.g. [0, 3].
511      * @param {function} f A function which takes one argument of type number and returns a number.
512      * @param {Object} [config] The algorithm setup. Accepted properties are max_iterations of type number and precision eps.
513      * @param {Number} [config.max_iterations=20]
514      * @param {Number} [config.eps=0.0000001]
515      * @returns {Number} Integral value of f over interval
516      * @example
517      * function f(x) {
518      *   return x*x;
519      * }
520      *
521      * // calculates integral of <tt>f</tt> from 0 to 2.
522      * var area1 = JXG.Math.Numerics.Romberg([0, 2], f);
523      *
524      * // the same with an anonymous function
525      * var area2 = JXG.Math.Numerics.Romberg([0, 2], function (x) { return x*x; });
526      *
527      * // use trapez rule with maximum of 16 iterations or stop if the precision 0.0001 has been reached.
528      * var area3 = JXG.Math.Numerics.Romberg([0, 2], f,
529      *                                   {max_iterations: 16, eps: 0.0001});
530      * @memberof JXG.Math.Numerics
531      */
532     Romberg: function (interval, f, config) {
533         var a,
534             b,
535             h,
536             s,
537             n,
538             k,
539             i,
540             q,
541             p = [],
542             integral = 0.0,
543             last = Infinity,
544             m = config && Type.isNumber(config.max_iterations) ? config.max_iterations : 20,
545             eps = config && Type.isNumber(config.eps) ? config.eps : config.eps || 0.0000001;
546 
547         a = interval[0];
548         b = interval[1];
549         h = b - a;
550         n = 1;
551 
552         p[0] = 0.5 * h * (f(a) + f(b));
553 
554         for (k = 0; k < m; ++k) {
555             s = 0;
556             h *= 0.5;
557             n *= 2;
558             q = 1;
559 
560             for (i = 1; i < n; i += 2) {
561                 s += f(a + i * h);
562             }
563 
564             p[k + 1] = 0.5 * p[k] + s * h;
565 
566             integral = p[k + 1];
567             for (i = k - 1; i >= 0; --i) {
568                 q *= 4;
569                 p[i] = p[i + 1] + (p[i + 1] - p[i]) / (q - 1.0);
570                 integral = p[i];
571             }
572 
573             if (Math.abs(integral - last) < eps * Math.abs(integral)) {
574                 break;
575             }
576             last = integral;
577         }
578 
579         return integral;
580     },
581 
582     /**
583      * Calculates the integral of function f over interval using Gauss-Legendre quadrature.
584      * @param {Array} interval The integration interval, e.g. [0, 3].
585      * @param {function} f A function which takes one argument of type number and returns a number.
586      * @param {Object} [config] The algorithm setup. Accepted property is the order n of type number. n is allowed to take
587      * values between 2 and 18, default value is 12.
588      * @param {Number} [config.n=16]
589      * @returns {Number} Integral value of f over interval
590      * @example
591      * function f(x) {
592      *   return x*x;
593      * }
594      *
595      * // calculates integral of <tt>f</tt> from 0 to 2.
596      * var area1 = JXG.Math.Numerics.GaussLegendre([0, 2], f);
597      *
598      * // the same with an anonymous function
599      * var area2 = JXG.Math.Numerics.GaussLegendre([0, 2], function (x) { return x*x; });
600      *
601      * // use 16 point Gauss-Legendre rule.
602      * var area3 = JXG.Math.Numerics.GaussLegendre([0, 2], f,
603      *                                   {n: 16});
604      * @memberof JXG.Math.Numerics
605      */
606     GaussLegendre: function (interval, f, config) {
607         var a,
608             b,
609             i,
610             m,
611             xp,
612             xm,
613             result = 0.0,
614             table_xi = [],
615             table_w = [],
616             xi,
617             w,
618             n = config && Type.isNumber(config.n) ? config.n : 12;
619 
620         if (n > 18) {
621             n = 18;
622         }
623 
624         /* n = 2 */
625         table_xi[2] = [0.5773502691896257645091488];
626         table_w[2] = [1.0];
627 
628         /* n = 4 */
629         table_xi[4] = [0.3399810435848562648026658, 0.8611363115940525752239465];
630         table_w[4] = [0.6521451548625461426269361, 0.3478548451374538573730639];
631 
632         /* n = 6 */
633         table_xi[6] = [
634             0.2386191860831969086305017, 0.6612093864662645136613996,
635             0.9324695142031520278123016
636         ];
637         table_w[6] = [
638             0.4679139345726910473898703, 0.3607615730481386075698335,
639             0.1713244923791703450402961
640         ];
641 
642         /* n = 8 */
643         table_xi[8] = [
644             0.1834346424956498049394761, 0.525532409916328985817739,
645             0.7966664774136267395915539, 0.9602898564975362316835609
646         ];
647         table_w[8] = [
648             0.3626837833783619829651504, 0.3137066458778872873379622,
649             0.222381034453374470544356, 0.1012285362903762591525314
650         ];
651 
652         /* n = 10 */
653         table_xi[10] = [
654             0.148874338981631210884826, 0.4333953941292471907992659,
655             0.6794095682990244062343274, 0.8650633666889845107320967, 0.973906528517171720077964
656         ];
657         table_w[10] = [
658             0.295524224714752870173893, 0.2692667193099963550912269,
659             0.2190863625159820439955349, 0.1494513491505805931457763,
660             0.0666713443086881375935688
661         ];
662 
663         /* n = 12 */
664         table_xi[12] = [
665             0.1252334085114689154724414, 0.3678314989981801937526915,
666             0.5873179542866174472967024, 0.7699026741943046870368938,
667             0.9041172563704748566784659, 0.9815606342467192506905491
668         ];
669         table_w[12] = [
670             0.2491470458134027850005624, 0.2334925365383548087608499,
671             0.2031674267230659217490645, 0.1600783285433462263346525,
672             0.1069393259953184309602547, 0.047175336386511827194616
673         ];
674 
675         /* n = 14 */
676         table_xi[14] = [
677             0.1080549487073436620662447, 0.3191123689278897604356718,
678             0.5152486363581540919652907, 0.6872929048116854701480198,
679             0.8272013150697649931897947, 0.9284348836635735173363911,
680             0.9862838086968123388415973
681         ];
682         table_w[14] = [
683             0.2152638534631577901958764, 0.2051984637212956039659241,
684             0.1855383974779378137417166, 0.1572031671581935345696019,
685             0.1215185706879031846894148, 0.0801580871597602098056333,
686             0.0351194603317518630318329
687         ];
688 
689         /* n = 16 */
690         table_xi[16] = [
691             0.0950125098376374401853193, 0.2816035507792589132304605,
692             0.4580167776572273863424194, 0.6178762444026437484466718,
693             0.7554044083550030338951012, 0.8656312023878317438804679,
694             0.9445750230732325760779884, 0.9894009349916499325961542
695         ];
696         table_w[16] = [
697             0.1894506104550684962853967, 0.1826034150449235888667637,
698             0.1691565193950025381893121, 0.1495959888165767320815017,
699             0.1246289712555338720524763, 0.0951585116824927848099251,
700             0.0622535239386478928628438, 0.0271524594117540948517806
701         ];
702 
703         /* n = 18 */
704         table_xi[18] = [
705             0.0847750130417353012422619, 0.2518862256915055095889729,
706             0.4117511614628426460359318, 0.5597708310739475346078715,
707             0.6916870430603532078748911, 0.8037049589725231156824175,
708             0.8926024664975557392060606, 0.9558239495713977551811959, 0.991565168420930946730016
709         ];
710         table_w[18] = [
711             0.1691423829631435918406565, 0.1642764837458327229860538,
712             0.154684675126265244925418, 0.1406429146706506512047313,
713             0.1225552067114784601845191, 0.100942044106287165562814,
714             0.0764257302548890565291297, 0.0497145488949697964533349,
715             0.0216160135264833103133427
716         ];
717 
718         /* n = 3 */
719         table_xi[3] = [0.0, 0.7745966692414833770358531];
720         table_w[3] = [0.8888888888888888888888889, 0.5555555555555555555555556];
721 
722         /* n = 5 */
723         table_xi[5] = [0.0, 0.5384693101056830910363144, 0.9061798459386639927976269];
724         table_w[5] = [
725             0.5688888888888888888888889, 0.4786286704993664680412915, 0.236926885056189087514264
726         ];
727 
728         /* n = 7 */
729         table_xi[7] = [
730             0.0, 0.4058451513773971669066064, 0.7415311855993944398638648,
731             0.9491079123427585245261897
732         ];
733         table_w[7] = [
734             0.417959183673469387755102, 0.3818300505051189449503698,
735             0.2797053914892766679014678, 0.1294849661688696932706114
736         ];
737 
738         /* n = 9 */
739         table_xi[9] = [
740             0.0, 0.324253423403808929038538, 0.613371432700590397308702,
741             0.8360311073266357942994298, 0.9681602395076260898355762
742         ];
743         table_w[9] = [
744             0.3302393550012597631645251, 0.3123470770400028400686304,
745             0.2606106964029354623187429, 0.180648160694857404058472, 0.0812743883615744119718922
746         ];
747 
748         /* n = 11 */
749         table_xi[11] = [
750             0.0, 0.269543155952344972331532, 0.5190961292068118159257257,
751             0.7301520055740493240934163, 0.8870625997680952990751578, 0.978228658146056992803938
752         ];
753         table_w[11] = [
754             0.2729250867779006307144835, 0.2628045445102466621806889,
755             0.2331937645919904799185237, 0.1862902109277342514260976,
756             0.1255803694649046246346943, 0.0556685671161736664827537
757         ];
758 
759         /* n = 13 */
760         table_xi[13] = [
761             0.0, 0.2304583159551347940655281, 0.4484927510364468528779129,
762             0.6423493394403402206439846, 0.8015780907333099127942065,
763             0.9175983992229779652065478, 0.9841830547185881494728294
764         ];
765         table_w[13] = [
766             0.2325515532308739101945895, 0.2262831802628972384120902,
767             0.2078160475368885023125232, 0.1781459807619457382800467,
768             0.1388735102197872384636018, 0.0921214998377284479144218,
769             0.0404840047653158795200216
770         ];
771 
772         /* n = 15 */
773         table_xi[15] = [
774             0.0, 0.2011940939974345223006283, 0.3941513470775633698972074,
775             0.5709721726085388475372267, 0.7244177313601700474161861,
776             0.8482065834104272162006483, 0.9372733924007059043077589,
777             0.9879925180204854284895657
778         ];
779         table_w[15] = [
780             0.2025782419255612728806202, 0.1984314853271115764561183,
781             0.1861610000155622110268006, 0.1662692058169939335532009,
782             0.1395706779261543144478048, 0.1071592204671719350118695,
783             0.0703660474881081247092674, 0.0307532419961172683546284
784         ];
785 
786         /* n = 17 */
787         table_xi[17] = [
788             0.0, 0.1784841814958478558506775, 0.3512317634538763152971855,
789             0.5126905370864769678862466, 0.6576711592166907658503022,
790             0.7815140038968014069252301, 0.8802391537269859021229557,
791             0.950675521768767761222717, 0.990575475314417335675434
792         ];
793         table_w[17] = [
794             0.1794464703562065254582656, 0.176562705366992646325271,
795             0.1680041021564500445099707, 0.1540457610768102880814316, 0.13513636846852547328632,
796             0.1118838471934039710947884, 0.0850361483171791808835354,
797             0.0554595293739872011294402, 0.02414830286854793196011
798         ];
799 
800         a = interval[0];
801         b = interval[1];
802 
803         //m = Math.ceil(n * 0.5);
804         m = (n + 1) >> 1;
805 
806         xi = table_xi[n];
807         w = table_w[n];
808 
809         xm = 0.5 * (b - a);
810         xp = 0.5 * (b + a);
811 
812         if (n & (1 === 1)) {
813             // n odd
814             result = w[0] * f(xp);
815             for (i = 1; i < m; ++i) {
816                 result += w[i] * (f(xp + xm * xi[i]) + f(xp - xm * xi[i]));
817             }
818         } else {
819             // n even
820             result = 0.0;
821             for (i = 0; i < m; ++i) {
822                 result += w[i] * (f(xp + xm * xi[i]) + f(xp - xm * xi[i]));
823             }
824         }
825 
826         return xm * result;
827     },
828 
829     /**
830      * Scale error in Gauss Kronrod quadrature.
831      * Internal method used in {@link JXG.Math.Numerics._gaussKronrod}.
832      * @private
833      */
834     _rescale_error: function (err, result_abs, result_asc) {
835         var scale,
836             min_err,
837             DBL_MIN = 2.2250738585072014e-308,
838             DBL_EPS = 2.2204460492503131e-16;
839 
840         err = Math.abs(err);
841         if (result_asc !== 0 && err !== 0) {
842             scale = Math.pow((200 * err) / result_asc, 1.5);
843 
844             if (scale < 1.0) {
845                 err = result_asc * scale;
846             } else {
847                 err = result_asc;
848             }
849         }
850         if (result_abs > DBL_MIN / (50 * DBL_EPS)) {
851             min_err = 50 * DBL_EPS * result_abs;
852 
853             if (min_err > err) {
854                 err = min_err;
855             }
856         }
857 
858         return err;
859     },
860 
861     /**
862      * Generic Gauss-Kronrod quadrature algorithm.
863      * Internal method used in {@link JXG.Math.Numerics.GaussKronrod15},
864      * {@link JXG.Math.Numerics.GaussKronrod21},
865      * {@link JXG.Math.Numerics.GaussKronrod31}.
866      * Taken from QUADPACK.
867      *
868      * @param {Array} interval The integration interval, e.g. [0, 3].
869      * @param {function} f A function which takes one argument of type number and returns a number.
870      * @param {Number} n order
871      * @param {Array} xgk Kronrod quadrature abscissae
872      * @param {Array} wg Weights of the Gauss rule
873      * @param {Array} wgk Weights of the Kronrod rule
874      * @param {Object} resultObj Object returning resultObj.abserr, resultObj.resabs, resultObj.resasc.
875      * See the library QUADPACK for an explanation.
876      *
877      * @returns {Number} Integral value of f over interval
878      *
879      * @private
880      */
881     _gaussKronrod: function (interval, f, n, xgk, wg, wgk, resultObj) {
882         var a = interval[0],
883             b = interval[1],
884             up,
885             result,
886             center = 0.5 * (a + b),
887             half_length = 0.5 * (b - a),
888             abs_half_length = Math.abs(half_length),
889             f_center = f(center),
890             result_gauss = 0.0,
891             result_kronrod = f_center * wgk[n - 1],
892             result_abs = Math.abs(result_kronrod),
893             result_asc = 0.0,
894             mean = 0.0,
895             err = 0.0,
896             j,
897             jtw,
898             abscissa,
899             fval1,
900             fval2,
901             fsum,
902             jtwm1,
903             fv1 = [],
904             fv2 = [];
905 
906         if (n % 2 === 0) {
907             result_gauss = f_center * wg[n / 2 - 1];
908         }
909 
910         up = Math.floor((n - 1) / 2);
911         for (j = 0; j < up; j++) {
912             jtw = j * 2 + 1; // in original fortran j=1,2,3 jtw=2,4,6
913             abscissa = half_length * xgk[jtw];
914             fval1 = f(center - abscissa);
915             fval2 = f(center + abscissa);
916             fsum = fval1 + fval2;
917             fv1[jtw] = fval1;
918             fv2[jtw] = fval2;
919             result_gauss += wg[j] * fsum;
920             result_kronrod += wgk[jtw] * fsum;
921             result_abs += wgk[jtw] * (Math.abs(fval1) + Math.abs(fval2));
922         }
923 
924         up = Math.floor(n / 2);
925         for (j = 0; j < up; j++) {
926             jtwm1 = j * 2;
927             abscissa = half_length * xgk[jtwm1];
928             fval1 = f(center - abscissa);
929             fval2 = f(center + abscissa);
930             fv1[jtwm1] = fval1;
931             fv2[jtwm1] = fval2;
932             result_kronrod += wgk[jtwm1] * (fval1 + fval2);
933             result_abs += wgk[jtwm1] * (Math.abs(fval1) + Math.abs(fval2));
934         }
935 
936         mean = result_kronrod * 0.5;
937         result_asc = wgk[n - 1] * Math.abs(f_center - mean);
938 
939         for (j = 0; j < n - 1; j++) {
940             result_asc += wgk[j] * (Math.abs(fv1[j] - mean) + Math.abs(fv2[j] - mean));
941         }
942 
943         // scale by the width of the integration region
944         err = (result_kronrod - result_gauss) * half_length;
945 
946         result_kronrod *= half_length;
947         result_abs *= abs_half_length;
948         result_asc *= abs_half_length;
949         result = result_kronrod;
950 
951         resultObj.abserr = this._rescale_error(err, result_abs, result_asc);
952         resultObj.resabs = result_abs;
953         resultObj.resasc = result_asc;
954 
955         return result;
956     },
957 
958     /**
959      * 15 point Gauss-Kronrod quadrature algorithm, see the library QUADPACK
960      * @param {Array} interval The integration interval, e.g. [0, 3].
961      * @param {function} f A function which takes one argument of type number and returns a number.
962      * @param {Object} resultObj Object returning resultObj.abserr, resultObj.resabs, resultObj.resasc. See the library
963      *  QUADPACK for an explanation.
964      *
965      * @returns {Number} Integral value of f over interval
966      *
967      * @memberof JXG.Math.Numerics
968      */
969     GaussKronrod15: function (interval, f, resultObj) {
970         /* Gauss quadrature weights and kronrod quadrature abscissae and
971                 weights as evaluated with 80 decimal digit arithmetic by
972                 L. W. Fullerton, Bell Labs, Nov. 1981. */
973 
974         var xgk =
975             /* abscissae of the 15-point kronrod rule */
976             [
977                 0.991455371120812639206854697526329, 0.949107912342758524526189684047851,
978                 0.864864423359769072789712788640926, 0.741531185599394439863864773280788,
979                 0.58608723546769113029414483825873, 0.405845151377397166906606412076961,
980                 0.207784955007898467600689403773245, 0.0
981             ],
982             /* xgk[1], xgk[3], ... abscissae of the 7-point gauss rule.
983                 xgk[0], xgk[2], ... abscissae to optimally extend the 7-point gauss rule */
984 
985             wg =
986                 /* weights of the 7-point gauss rule */
987                 [
988                     0.129484966168869693270611432679082, 0.27970539148927666790146777142378,
989                     0.381830050505118944950369775488975, 0.417959183673469387755102040816327
990                 ],
991             wgk =
992                 /* weights of the 15-point kronrod rule */
993                 [
994                     0.02293532201052922496373200805897, 0.063092092629978553290700663189204,
995                     0.104790010322250183839876322541518, 0.140653259715525918745189590510238,
996                     0.16900472663926790282658342659855, 0.190350578064785409913256402421014,
997                     0.204432940075298892414161999234649, 0.209482141084727828012999174891714
998                 ];
999 
1000         return this._gaussKronrod(interval, f, 8, xgk, wg, wgk, resultObj);
1001     },
1002 
1003     /**
1004      * 21 point Gauss-Kronrod quadrature algorithm, see the library QUADPACK
1005      * @param {Array} interval The integration interval, e.g. [0, 3].
1006      * @param {function} f A function which takes one argument of type number and returns a number.
1007      * @param {Object} resultObj Object returning resultObj.abserr, resultObj.resabs, resultObj.resasc. See the library
1008      *  QUADPACK for an explanation.
1009      *
1010      * @returns {Number} Integral value of f over interval
1011      *
1012      * @memberof JXG.Math.Numerics
1013      */
1014     GaussKronrod21: function (interval, f, resultObj) {
1015         /* Gauss quadrature weights and kronrod quadrature abscissae and
1016                 weights as evaluated with 80 decimal digit arithmetic by
1017                 L. W. Fullerton, Bell Labs, Nov. 1981. */
1018 
1019         var xgk =
1020             /* abscissae of the 21-point kronrod rule */
1021             [
1022                 0.995657163025808080735527280689003, 0.973906528517171720077964012084452,
1023                 0.930157491355708226001207180059508, 0.865063366688984510732096688423493,
1024                 0.780817726586416897063717578345042, 0.679409568299024406234327365114874,
1025                 0.562757134668604683339000099272694, 0.433395394129247190799265943165784,
1026                 0.294392862701460198131126603103866, 0.14887433898163121088482600112972, 0.0
1027             ],
1028             /* xgk[1], xgk[3], ... abscissae of the 10-point gauss rule.
1029                 xgk[0], xgk[2], ... abscissae to optimally extend the 10-point gauss rule */
1030             wg =
1031                 /* weights of the 10-point gauss rule */
1032                 [
1033                     0.066671344308688137593568809893332, 0.149451349150580593145776339657697,
1034                     0.219086362515982043995534934228163, 0.269266719309996355091226921569469,
1035                     0.295524224714752870173892994651338
1036                 ],
1037             wgk =
1038                 /* weights of the 21-point kronrod rule */
1039                 [
1040                     0.011694638867371874278064396062192, 0.03255816230796472747881897245939,
1041                     0.05475589657435199603138130024458, 0.07503967481091995276704314091619,
1042                     0.093125454583697605535065465083366, 0.109387158802297641899210590325805,
1043                     0.123491976262065851077958109831074, 0.134709217311473325928054001771707,
1044                     0.142775938577060080797094273138717, 0.147739104901338491374841515972068,
1045                     0.149445554002916905664936468389821
1046                 ];
1047 
1048         return this._gaussKronrod(interval, f, 11, xgk, wg, wgk, resultObj);
1049     },
1050 
1051     /**
1052      * 31 point Gauss-Kronrod quadrature algorithm, see the library QUADPACK
1053      * @param {Array} interval The integration interval, e.g. [0, 3].
1054      * @param {function} f A function which takes one argument of type number and returns a number.
1055      * @param {Object} resultObj Object returning resultObj.abserr, resultObj.resabs, resultObj.resasc. See the library
1056      *  QUADPACK for an explanation.
1057      *
1058      * @returns {Number} Integral value of f over interval
1059      *
1060      * @memberof JXG.Math.Numerics
1061      */
1062     GaussKronrod31: function (interval, f, resultObj) {
1063         /* Gauss quadrature weights and kronrod quadrature abscissae and
1064                 weights as evaluated with 80 decimal digit arithmetic by
1065                 L. W. Fullerton, Bell Labs, Nov. 1981. */
1066 
1067         var xgk =
1068             /* abscissae of the 21-point kronrod rule */
1069             [
1070                 0.998002298693397060285172840152271, 0.987992518020485428489565718586613,
1071                 0.967739075679139134257347978784337, 0.937273392400705904307758947710209,
1072                 0.897264532344081900882509656454496, 0.848206583410427216200648320774217,
1073                 0.790418501442465932967649294817947, 0.724417731360170047416186054613938,
1074                 0.650996741297416970533735895313275, 0.570972172608538847537226737253911,
1075                 0.485081863640239680693655740232351, 0.394151347077563369897207370981045,
1076                 0.299180007153168812166780024266389, 0.201194093997434522300628303394596,
1077                 0.101142066918717499027074231447392, 0.0
1078             ],
1079             /* xgk[1], xgk[3], ... abscissae of the 10-point gauss rule.
1080                 xgk[0], xgk[2], ... abscissae to optimally extend the 10-point gauss rule */
1081             wg =
1082                 /* weights of the 10-point gauss rule */
1083                 [
1084                     0.030753241996117268354628393577204, 0.070366047488108124709267416450667,
1085                     0.107159220467171935011869546685869, 0.139570677926154314447804794511028,
1086                     0.166269205816993933553200860481209, 0.186161000015562211026800561866423,
1087                     0.198431485327111576456118326443839, 0.202578241925561272880620199967519
1088                 ],
1089             wgk =
1090                 /* weights of the 21-point kronrod rule */
1091                 [
1092                     0.005377479872923348987792051430128, 0.015007947329316122538374763075807,
1093                     0.025460847326715320186874001019653, 0.03534636079137584622203794847836,
1094                     0.04458975132476487660822729937328, 0.05348152469092808726534314723943,
1095                     0.062009567800670640285139230960803, 0.069854121318728258709520077099147,
1096                     0.076849680757720378894432777482659, 0.083080502823133021038289247286104,
1097                     0.088564443056211770647275443693774, 0.093126598170825321225486872747346,
1098                     0.096642726983623678505179907627589, 0.099173598721791959332393173484603,
1099                     0.10076984552387559504494666261757, 0.101330007014791549017374792767493
1100                 ];
1101 
1102         return this._gaussKronrod(interval, f, 16, xgk, wg, wgk, resultObj);
1103     },
1104 
1105     /**
1106      * Generate workspace object for {@link JXG.Math.Numerics.Qag}.
1107      * @param {Array} interval The integration interval, e.g. [0, 3].
1108      * @param {Number} n Max. limit
1109      * @returns {Object} Workspace object
1110      *
1111      * @private
1112      * @memberof JXG.Math.Numerics
1113      */
1114     _workspace: function (interval, n) {
1115         return {
1116             limit: n,
1117             size: 0,
1118             nrmax: 0,
1119             i: 0,
1120             alist: [interval[0]],
1121             blist: [interval[1]],
1122             rlist: [0.0],
1123             elist: [0.0],
1124             order: [0],
1125             level: [0],
1126 
1127             qpsrt: function () {
1128                 var last = this.size - 1,
1129                     limit = this.limit,
1130                     errmax,
1131                     errmin,
1132                     i,
1133                     k,
1134                     top,
1135                     i_nrmax = this.nrmax,
1136                     i_maxerr = this.order[i_nrmax];
1137 
1138                 /* Check whether the list contains more than two error estimates */
1139                 if (last < 2) {
1140                     this.order[0] = 0;
1141                     this.order[1] = 1;
1142                     this.i = i_maxerr;
1143                     return;
1144                 }
1145 
1146                 errmax = this.elist[i_maxerr];
1147 
1148                 /* This part of the routine is only executed if, due to a difficult
1149                         integrand, subdivision increased the error estimate. In the normal
1150                         case the insert procedure should start after the nrmax-th largest
1151                         error estimate. */
1152                 while (i_nrmax > 0 && errmax > this.elist[this.order[i_nrmax - 1]]) {
1153                     this.order[i_nrmax] = this.order[i_nrmax - 1];
1154                     i_nrmax--;
1155                 }
1156 
1157                 /* Compute the number of elements in the list to be maintained in
1158                         descending order. This number depends on the number of
1159                         subdivisions still allowed. */
1160                 if (last < limit / 2 + 2) {
1161                     top = last;
1162                 } else {
1163                     top = limit - last + 1;
1164                 }
1165 
1166                 /* Insert errmax by traversing the list top-down, starting
1167                         comparison from the element elist(order(i_nrmax+1)). */
1168                 i = i_nrmax + 1;
1169 
1170                 /* The order of the tests in the following line is important to
1171                         prevent a segmentation fault */
1172                 while (i < top && errmax < this.elist[this.order[i]]) {
1173                     this.order[i - 1] = this.order[i];
1174                     i++;
1175                 }
1176 
1177                 this.order[i - 1] = i_maxerr;
1178 
1179                 /* Insert errmin by traversing the list bottom-up */
1180                 errmin = this.elist[last];
1181                 k = top - 1;
1182 
1183                 while (k > i - 2 && errmin >= this.elist[this.order[k]]) {
1184                     this.order[k + 1] = this.order[k];
1185                     k--;
1186                 }
1187 
1188                 this.order[k + 1] = last;
1189 
1190                 /* Set i_max and e_max */
1191                 i_maxerr = this.order[i_nrmax];
1192                 this.i = i_maxerr;
1193                 this.nrmax = i_nrmax;
1194             },
1195 
1196             set_initial_result: function (result, error) {
1197                 this.size = 1;
1198                 this.rlist[0] = result;
1199                 this.elist[0] = error;
1200             },
1201 
1202             update: function (a1, b1, area1, error1, a2, b2, area2, error2) {
1203                 var i_max = this.i,
1204                     i_new = this.size,
1205                     new_level = this.level[this.i] + 1;
1206 
1207                 /* append the newly-created intervals to the list */
1208 
1209                 if (error2 > error1) {
1210                     this.alist[i_max] = a2; /* blist[maxerr] is already == b2 */
1211                     this.rlist[i_max] = area2;
1212                     this.elist[i_max] = error2;
1213                     this.level[i_max] = new_level;
1214 
1215                     this.alist[i_new] = a1;
1216                     this.blist[i_new] = b1;
1217                     this.rlist[i_new] = area1;
1218                     this.elist[i_new] = error1;
1219                     this.level[i_new] = new_level;
1220                 } else {
1221                     this.blist[i_max] = b1; /* alist[maxerr] is already == a1 */
1222                     this.rlist[i_max] = area1;
1223                     this.elist[i_max] = error1;
1224                     this.level[i_max] = new_level;
1225 
1226                     this.alist[i_new] = a2;
1227                     this.blist[i_new] = b2;
1228                     this.rlist[i_new] = area2;
1229                     this.elist[i_new] = error2;
1230                     this.level[i_new] = new_level;
1231                 }
1232 
1233                 this.size++;
1234 
1235                 if (new_level > this.maximum_level) {
1236                     this.maximum_level = new_level;
1237                 }
1238 
1239                 this.qpsrt();
1240             },
1241 
1242             retrieve: function () {
1243                 var i = this.i;
1244                 return {
1245                     a: this.alist[i],
1246                     b: this.blist[i],
1247                     r: this.rlist[i],
1248                     e: this.elist[i]
1249                 };
1250             },
1251 
1252             sum_results: function () {
1253                 var nn = this.size,
1254                     k,
1255                     result_sum = 0.0;
1256 
1257                 for (k = 0; k < nn; k++) {
1258                     result_sum += this.rlist[k];
1259                 }
1260 
1261                 return result_sum;
1262             },
1263 
1264             subinterval_too_small: function (a1, a2, b2) {
1265                 var e = 2.2204460492503131e-16,
1266                     u = 2.2250738585072014e-308,
1267                     tmp = (1 + 100 * e) * (Math.abs(a2) + 1000 * u);
1268 
1269                 return Math.abs(a1) <= tmp && Math.abs(b2) <= tmp;
1270             }
1271         };
1272     },
1273 
1274     /**
1275      * Quadrature algorithm qag from QUADPACK.
1276      * Internal method used in {@link JXG.Math.Numerics.GaussKronrod15},
1277      * {@link JXG.Math.Numerics.GaussKronrod21},
1278      * {@link JXG.Math.Numerics.GaussKronrod31}.
1279      *
1280      * @param {Array} interval The integration interval, e.g. [0, 3].
1281      * @param {function} f A function which takes one argument of type number and returns a number.
1282      * @param {Object} [config] The algorithm setup. Accepted propert are max. recursion limit of type number,
1283      * and epsrel and epsabs, the relative and absolute required precision of type number. Further,
1284      * q the internal quadrature sub-algorithm of type function.
1285      * @param {Number} [config.limit=15]
1286      * @param {Number} [config.epsrel=0.0000001]
1287      * @param {Number} [config.epsabs=0.0000001]
1288      * @param {Number} [config.q=JXG.Math.Numerics.GaussKronrod15]
1289      * @returns {Number} Integral value of f over interval
1290      *
1291      * @example
1292      * function f(x) {
1293      *   return x*x;
1294      * }
1295      *
1296      * // calculates integral of <tt>f</tt> from 0 to 2.
1297      * var area1 = JXG.Math.Numerics.Qag([0, 2], f);
1298      *
1299      * // the same with an anonymous function
1300      * var area2 = JXG.Math.Numerics.Qag([0, 2], function (x) { return x*x; });
1301      *
1302      * // use JXG.Math.Numerics.GaussKronrod31 rule as sub-algorithm.
1303      * var area3 = JXG.Math.Numerics.Quag([0, 2], f,
1304      *                                   {q: JXG.Math.Numerics.GaussKronrod31});
1305      * @memberof JXG.Math.Numerics
1306      */
1307     Qag: function (interval, f, config) {
1308         var DBL_EPS = 2.2204460492503131e-16,
1309             ws = this._workspace(interval, 1000),
1310             limit = config && Type.isNumber(config.limit) ? config.limit : 15,
1311             epsrel = config && Type.isNumber(config.epsrel) ? config.epsrel : 0.0000001,
1312             epsabs = config && Type.isNumber(config.epsabs) ? config.epsabs : 0.0000001,
1313             q = config && Type.isFunction(config.q) ? config.q : this.GaussKronrod15,
1314             resultObj = {},
1315             area,
1316             errsum,
1317             result0,
1318             abserr0,
1319             resabs0,
1320             resasc0,
1321             result,
1322             tolerance,
1323             iteration = 0,
1324             roundoff_type1 = 0,
1325             roundoff_type2 = 0,
1326             error_type = 0,
1327             round_off,
1328             a1,
1329             b1,
1330             a2,
1331             b2,
1332             a_i,
1333             b_i,
1334             r_i,
1335             e_i,
1336             area1 = 0,
1337             area2 = 0,
1338             area12 = 0,
1339             error1 = 0,
1340             error2 = 0,
1341             error12 = 0,
1342             resasc1,
1343             resasc2,
1344             // resabs1, resabs2,
1345             wsObj,
1346             delta;
1347 
1348         if (limit > ws.limit) {
1349             JXG.warn("iteration limit exceeds available workspace");
1350         }
1351         if (epsabs <= 0 && (epsrel < 50 * Mat.eps || epsrel < 0.5e-28)) {
1352             JXG.warn("tolerance cannot be acheived with given epsabs and epsrel");
1353         }
1354 
1355         result0 = q.apply(this, [interval, f, resultObj]);
1356         abserr0 = resultObj.abserr;
1357         resabs0 = resultObj.resabs;
1358         resasc0 = resultObj.resasc;
1359 
1360         ws.set_initial_result(result0, abserr0);
1361         tolerance = Math.max(epsabs, epsrel * Math.abs(result0));
1362         round_off = 50 * DBL_EPS * resabs0;
1363 
1364         if (abserr0 <= round_off && abserr0 > tolerance) {
1365             result = result0;
1366             // abserr = abserr0;
1367 
1368             JXG.warn("cannot reach tolerance because of roundoff error on first attempt");
1369             return -Infinity;
1370         }
1371 
1372         if ((abserr0 <= tolerance && abserr0 !== resasc0) || abserr0 === 0.0) {
1373             result = result0;
1374             // abserr = abserr0;
1375 
1376             return result;
1377         }
1378 
1379         if (limit === 1) {
1380             result = result0;
1381             // abserr = abserr0;
1382 
1383             JXG.warn("a maximum of one iteration was insufficient");
1384             return -Infinity;
1385         }
1386 
1387         area = result0;
1388         errsum = abserr0;
1389         iteration = 1;
1390 
1391         do {
1392             area1 = 0;
1393             area2 = 0;
1394             area12 = 0;
1395             error1 = 0;
1396             error2 = 0;
1397             error12 = 0;
1398 
1399             /* Bisect the subinterval with the largest error estimate */
1400             wsObj = ws.retrieve();
1401             a_i = wsObj.a;
1402             b_i = wsObj.b;
1403             r_i = wsObj.r;
1404             e_i = wsObj.e;
1405 
1406             a1 = a_i;
1407             b1 = 0.5 * (a_i + b_i);
1408             a2 = b1;
1409             b2 = b_i;
1410 
1411             area1 = q.apply(this, [[a1, b1], f, resultObj]);
1412             error1 = resultObj.abserr;
1413             // resabs1 = resultObj.resabs;
1414             resasc1 = resultObj.resasc;
1415 
1416             area2 = q.apply(this, [[a2, b2], f, resultObj]);
1417             error2 = resultObj.abserr;
1418             // resabs2 = resultObj.resabs;
1419             resasc2 = resultObj.resasc;
1420 
1421             area12 = area1 + area2;
1422             error12 = error1 + error2;
1423 
1424             errsum += error12 - e_i;
1425             area += area12 - r_i;
1426 
1427             if (resasc1 !== error1 && resasc2 !== error2) {
1428                 delta = r_i - area12;
1429                 if (Math.abs(delta) <= 1.0e-5 * Math.abs(area12) && error12 >= 0.99 * e_i) {
1430                     roundoff_type1++;
1431                 }
1432                 if (iteration >= 10 && error12 > e_i) {
1433                     roundoff_type2++;
1434                 }
1435             }
1436 
1437             tolerance = Math.max(epsabs, epsrel * Math.abs(area));
1438 
1439             if (errsum > tolerance) {
1440                 if (roundoff_type1 >= 6 || roundoff_type2 >= 20) {
1441                     error_type = 2; /* round off error */
1442                 }
1443 
1444                 /* set error flag in the case of bad integrand behaviour at
1445                     a point of the integration range */
1446 
1447                 if (ws.subinterval_too_small(a1, a2, b2)) {
1448                     error_type = 3;
1449                 }
1450             }
1451 
1452             ws.update(a1, b1, area1, error1, a2, b2, area2, error2);
1453             wsObj = ws.retrieve();
1454             a_i = wsObj.a_i;
1455             b_i = wsObj.b_i;
1456             r_i = wsObj.r_i;
1457             e_i = wsObj.e_i;
1458 
1459             iteration++;
1460         } while (iteration < limit && !error_type && errsum > tolerance);
1461 
1462         result = ws.sum_results();
1463         // abserr = errsum;
1464         /*
1465   if (errsum <= tolerance)
1466     {
1467       return GSL_SUCCESS;
1468     }
1469   else if (error_type == 2)
1470     {
1471       GSL_ERROR ("roundoff error prevents tolerance from being achieved",
1472                  GSL_EROUND);
1473     }
1474   else if (error_type == 3)
1475     {
1476       GSL_ERROR ("bad integrand behavior found in the integration interval",
1477                  GSL_ESING);
1478     }
1479   else if (iteration == limit)
1480     {
1481       GSL_ERROR ("maximum number of subdivisions reached", GSL_EMAXITER);
1482     }
1483   else
1484     {
1485       GSL_ERROR ("could not integrate function", GSL_EFAILED);
1486     }
1487 */
1488 
1489         return result;
1490     },
1491 
1492     /**
1493      * Integral of function f over interval.
1494      * @param {Array} interval The integration interval, e.g. [0, 3].
1495      * @param {function} f A function which takes one argument of type number and returns a number.
1496      * @returns {Number} The value of the integral of f over interval
1497      * @see JXG.Math.Numerics.NewtonCotes
1498      * @see JXG.Math.Numerics.Romberg
1499      * @see JXG.Math.Numerics.Qag
1500      * @memberof JXG.Math.Numerics
1501      */
1502     I: function (interval, f) {
1503         // return this.NewtonCotes(interval, f, {number_of_nodes: 16, integration_type: 'milne'});
1504         // return this.Romberg(interval, f, {max_iterations: 20, eps: 0.0000001});
1505         return this.Qag(interval, f, {
1506             q: this.GaussKronrod15,
1507             limit: 15,
1508             epsrel: 0.0000001,
1509             epsabs: 0.0000001
1510         });
1511     },
1512 
1513     /**
1514      * Newton's method to find roots of a funtion in one variable.
1515      * @param {function} f We search for a solution of f(x)=0.
1516      * @param {Number} x initial guess for the root, i.e. start value.
1517      * @param {Object} context optional object that is treated as "this" in the function body. This is useful if
1518      * the function is a method of an object and contains a reference to its parent object via "this".
1519      * @returns {Number} A root of the function f.
1520      * @memberof JXG.Math.Numerics
1521      */
1522     Newton: function (f, x, context) {
1523         var df,
1524             i = 0,
1525             h = Mat.eps,
1526             newf = f.apply(context, [x]);
1527         // nfev = 1;
1528 
1529         // For compatibility
1530         if (Type.isArray(x)) {
1531             x = x[0];
1532         }
1533 
1534         while (i < 50 && Math.abs(newf) > h) {
1535             df = this.D(f, context)(x);
1536             // nfev += 2;
1537 
1538             if (Math.abs(df) > h) {
1539                 x -= newf / df;
1540             } else {
1541                 x += Math.random() * 0.2 - 1.0;
1542             }
1543 
1544             newf = f.apply(context, [x]);
1545             // nfev += 1;
1546             i += 1;
1547         }
1548 
1549         return x;
1550     },
1551 
1552     /**
1553      * Abstract method to find roots of univariate functions, which - for the time being -
1554      * is an alias for {@link JXG.Math.Numerics.chandrupatla}.
1555      * @param {function} f We search for a solution of f(x)=0.
1556      * @param {Number|Array} x initial guess for the root, i.e. starting value, or start interval enclosing the root.
1557      * @param {Object} context optional object that is treated as "this" in the function body. This is useful if
1558      * the function is a method of an object and contains a reference to its parent object via "this".
1559      * @returns {Number} A root of the function f.
1560      *
1561      * @see JXG.Math.Numerics.chandrupatla
1562      * @see JXG.Math.Numerics.fzero
1563      * @memberof JXG.Math.Numerics
1564      */
1565     root: function (f, x, context) {
1566         //return this.fzero(f, x, context);
1567         return this.chandrupatla(f, x, context);
1568     },
1569 
1570     /**
1571      * Compute an intersection of the curves c1 and c2
1572      * with a generalized Newton method.
1573      * We want to find values t1, t2 such that
1574      * c1(t1) = c2(t2), i.e.
1575      * (c1_x(t1)-c2_x(t2),c1_y(t1)-c2_y(t2)) = (0,0).
1576      * We set
1577      * (e,f) := (c1_x(t1)-c2_x(t2),c1_y(t1)-c2_y(t2))
1578      *
1579      * The Jacobian J is defined by
1580      * J = (a, b)
1581      *     (c, d)
1582      * where
1583      * a = c1_x'(t1)
1584      * b = -c2_x'(t2)
1585      * c = c1_y'(t1)
1586      * d = -c2_y'(t2)
1587      *
1588      * The inverse J^(-1) of J is equal to
1589      *  (d, -b)/
1590      *  (-c, a) / (ad-bc)
1591      *
1592      * Then, (t1new, t2new) := (t1,t2) - J^(-1)*(e,f).
1593      * If the function meetCurveCurve possesses the properties
1594      * t1memo and t2memo then these are taken as start values
1595      * for the Newton algorithm.
1596      * After stopping of the Newton algorithm the values of t1 and t2 are stored in
1597      * t1memo and t2memo.
1598      *
1599      * @param {JXG.Curve} c1 Curve, Line or Circle
1600      * @param {JXG.Curve} c2 Curve, Line or Circle
1601      * @param {Number} t1ini start value for t1
1602      * @param {Number} t2ini start value for t2
1603      * @returns {JXG.Coords} intersection point
1604      * @memberof JXG.Math.Numerics
1605      */
1606     generalizedNewton: function (c1, c2, t1ini, t2ini) {
1607         var t1,
1608             t2,
1609             a,
1610             b,
1611             c,
1612             d,
1613             disc,
1614             e,
1615             f,
1616             F,
1617             D00,
1618             D01,
1619             D10,
1620             D11,
1621             count = 0;
1622 
1623         if (this.generalizedNewton.t1memo) {
1624             t1 = this.generalizedNewton.t1memo;
1625             t2 = this.generalizedNewton.t2memo;
1626         } else {
1627             t1 = t1ini;
1628             t2 = t2ini;
1629         }
1630 
1631         e = c1.X(t1) - c2.X(t2);
1632         f = c1.Y(t1) - c2.Y(t2);
1633         F = e * e + f * f;
1634 
1635         D00 = this.D(c1.X, c1);
1636         D01 = this.D(c2.X, c2);
1637         D10 = this.D(c1.Y, c1);
1638         D11 = this.D(c2.Y, c2);
1639 
1640         while (F > Mat.eps && count < 10) {
1641             a = D00(t1);
1642             b = -D01(t2);
1643             c = D10(t1);
1644             d = -D11(t2);
1645             disc = a * d - b * c;
1646             t1 -= (d * e - b * f) / disc;
1647             t2 -= (a * f - c * e) / disc;
1648             e = c1.X(t1) - c2.X(t2);
1649             f = c1.Y(t1) - c2.Y(t2);
1650             F = e * e + f * f;
1651             count += 1;
1652         }
1653 
1654         this.generalizedNewton.t1memo = t1;
1655         this.generalizedNewton.t2memo = t2;
1656 
1657         if (Math.abs(t1) < Math.abs(t2)) {
1658             return [c1.X(t1), c1.Y(t1)];
1659         }
1660 
1661         return [c2.X(t2), c2.Y(t2)];
1662     },
1663 
1664     /**
1665      * Returns the Lagrange polynomials for curves with equidistant nodes, see
1666      * Jean-Paul Berrut, Lloyd N. Trefethen: Barycentric Lagrange Interpolation,
1667      * SIAM Review, Vol 46, No 3, (2004) 501-517.
1668      * The graph of the parametric curve [x(t),y(t)] runs through the given points.
1669      * @param {Array} p Array of JXG.Points
1670      * @returns {Array} An array consisting of two functions x(t), y(t) which define a parametric curve
1671      * f(t) = (x(t), y(t)), a number x1 (which equals 0) and a function x2 defining the curve's domain.
1672      * That means the curve is defined between x1 and x2(). x2 returns the (length of array p minus one).
1673      * @memberof JXG.Math.Numerics
1674      *
1675      * @example
1676      * var p = [];
1677      *
1678      * p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'});
1679      * p[1] = board.create('point', [-1.5, 5], {size:2, name: ''});
1680      * p[2] = board.create('point', [1, 4], {size:2, name: ''});
1681      * p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'});
1682      *
1683      * // Curve
1684      * var fg = JXG.Math.Numerics.Neville(p);
1685      * var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});
1686      *
1687      * </pre><div id="JXG88a8b3a8-6561-44f5-a678-76bca13fd484" class="jxgbox" style="width: 300px; height: 300px;"></div>
1688      * <script type="text/javascript">
1689      *     (function() {
1690      *         var board = JXG.JSXGraph.initBoard('JXG88a8b3a8-6561-44f5-a678-76bca13fd484',
1691      *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
1692      *     var p = [];
1693      *
1694      *     p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'});
1695      *     p[1] = board.create('point', [-1.5, 5], {size:2, name: ''});
1696      *     p[2] = board.create('point', [1, 4], {size:2, name: ''});
1697      *     p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'});
1698      *
1699      *     // Curve
1700      *     var fg = JXG.Math.Numerics.Neville(p);
1701      *     var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});
1702      *
1703      *     })();
1704      *
1705      * </script><pre>
1706      *
1707      */
1708     Neville: function (p) {
1709         var w = [],
1710             /** @ignore */
1711             makeFct = function (fun) {
1712                 return function (t, suspendedUpdate) {
1713                     var i,
1714                         d,
1715                         s,
1716                         bin = Mat.binomial,
1717                         len = p.length,
1718                         len1 = len - 1,
1719                         num = 0.0,
1720                         denom = 0.0;
1721 
1722                     if (!suspendedUpdate) {
1723                         s = 1;
1724                         for (i = 0; i < len; i++) {
1725                             w[i] = bin(len1, i) * s;
1726                             s *= -1;
1727                         }
1728                     }
1729 
1730                     d = t;
1731 
1732                     for (i = 0; i < len; i++) {
1733                         if (d === 0) {
1734                             return p[i][fun]();
1735                         }
1736                         s = w[i] / d;
1737                         d -= 1;
1738                         num += p[i][fun]() * s;
1739                         denom += s;
1740                     }
1741                     return num / denom;
1742                 };
1743             },
1744             xfct = makeFct("X"),
1745             yfct = makeFct("Y");
1746 
1747         return [
1748             xfct,
1749             yfct,
1750             0,
1751             function () {
1752                 return p.length - 1;
1753             }
1754         ];
1755     },
1756 
1757     /**
1758      * Calculates second derivatives at the given knots.
1759      * @param {Array} x x values of knots
1760      * @param {Array} y y values of knots
1761      * @returns {Array} Second derivatives of the interpolated function at the knots.
1762      * @see #splineEval
1763      * @memberof JXG.Math.Numerics
1764      */
1765     splineDef: function (x, y) {
1766         var pair,
1767             i,
1768             l,
1769             n = Math.min(x.length, y.length),
1770             diag = [],
1771             z = [],
1772             data = [],
1773             dx = [],
1774             delta = [],
1775             F = [];
1776 
1777         if (n === 2) {
1778             return [0, 0];
1779         }
1780 
1781         for (i = 0; i < n; i++) {
1782             pair = { X: x[i], Y: y[i] };
1783             data.push(pair);
1784         }
1785         data.sort(function (a, b) {
1786             return a.X - b.X;
1787         });
1788         for (i = 0; i < n; i++) {
1789             x[i] = data[i].X;
1790             y[i] = data[i].Y;
1791         }
1792 
1793         for (i = 0; i < n - 1; i++) {
1794             dx.push(x[i + 1] - x[i]);
1795         }
1796         for (i = 0; i < n - 2; i++) {
1797             delta.push(
1798                 (6 * (y[i + 2] - y[i + 1])) / dx[i + 1] - (6 * (y[i + 1] - y[i])) / dx[i]
1799             );
1800         }
1801 
1802         // ForwardSolve
1803         diag.push(2 * (dx[0] + dx[1]));
1804         z.push(delta[0]);
1805 
1806         for (i = 0; i < n - 3; i++) {
1807             l = dx[i + 1] / diag[i];
1808             diag.push(2 * (dx[i + 1] + dx[i + 2]) - l * dx[i + 1]);
1809             z.push(delta[i + 1] - l * z[i]);
1810         }
1811 
1812         // BackwardSolve
1813         F[n - 3] = z[n - 3] / diag[n - 3];
1814         for (i = n - 4; i >= 0; i--) {
1815             F[i] = (z[i] - dx[i + 1] * F[i + 1]) / diag[i];
1816         }
1817 
1818         // Generate f''-Vector
1819         for (i = n - 3; i >= 0; i--) {
1820             F[i + 1] = F[i];
1821         }
1822 
1823         // natural cubic spline
1824         F[0] = 0;
1825         F[n - 1] = 0;
1826 
1827         return F;
1828     },
1829 
1830     /**
1831      * Evaluate points on spline.
1832      * @param {Number|Array} x0 A single float value or an array of values to evaluate
1833      * @param {Array} x x values of knots
1834      * @param {Array} y y values of knots
1835      * @param {Array} F Second derivatives at knots, calculated by {@link JXG.Math.Numerics.splineDef}
1836      * @see #splineDef
1837      * @returns {Number|Array} A single value or an array, depending on what is given as x0.
1838      * @memberof JXG.Math.Numerics
1839      */
1840     splineEval: function (x0, x, y, F) {
1841         var i,
1842             j,
1843             a,
1844             b,
1845             c,
1846             d,
1847             x_,
1848             n = Math.min(x.length, y.length),
1849             l = 1,
1850             asArray = false,
1851             y0 = [];
1852 
1853         // number of points to be evaluated
1854         if (Type.isArray(x0)) {
1855             l = x0.length;
1856             asArray = true;
1857         } else {
1858             x0 = [x0];
1859         }
1860 
1861         for (i = 0; i < l; i++) {
1862             // is x0 in defining interval?
1863             if (x0[i] < x[0] || x[i] > x[n - 1]) {
1864                 return NaN;
1865             }
1866 
1867             // determine part of spline in which x0 lies
1868             for (j = 1; j < n; j++) {
1869                 if (x0[i] <= x[j]) {
1870                     break;
1871                 }
1872             }
1873 
1874             j -= 1;
1875 
1876             // we're now in the j-th partial interval, i.e. x[j] < x0[i] <= x[j+1];
1877             // determine the coefficients of the polynomial in this interval
1878             a = y[j];
1879             b =
1880                 (y[j + 1] - y[j]) / (x[j + 1] - x[j]) -
1881                 ((x[j + 1] - x[j]) / 6) * (F[j + 1] + 2 * F[j]);
1882             c = F[j] / 2;
1883             d = (F[j + 1] - F[j]) / (6 * (x[j + 1] - x[j]));
1884             // evaluate x0[i]
1885             x_ = x0[i] - x[j];
1886             //y0.push(a + b*x_ + c*x_*x_ + d*x_*x_*x_);
1887             y0.push(a + (b + (c + d * x_) * x_) * x_);
1888         }
1889 
1890         if (asArray) {
1891             return y0;
1892         }
1893 
1894         return y0[0];
1895     },
1896 
1897     /**
1898      * Generate a string containing the function term of a polynomial.
1899      * @param {Array} coeffs Coefficients of the polynomial. The position i belongs to x^i.
1900      * @param {Number} deg Degree of the polynomial
1901      * @param {String} varname Name of the variable (usually 'x')
1902      * @param {Number} prec Precision
1903      * @returns {String} A string containg the function term of the polynomial.
1904      * @memberof JXG.Math.Numerics
1905      */
1906     generatePolynomialTerm: function (coeffs, deg, varname, prec) {
1907         var i,
1908             t = [];
1909 
1910         for (i = deg; i >= 0; i--) {
1911             t = t.concat(["(", coeffs[i].toPrecision(prec), ")"]);
1912 
1913             if (i > 1) {
1914                 t = t.concat(["*", varname, "<sup>", i, "<", "/sup> + "]);
1915             } else if (i === 1) {
1916                 t = t.concat(["*", varname, " + "]);
1917             }
1918         }
1919 
1920         return t.join("");
1921     },
1922 
1923     /**
1924      * Computes the polynomial through a given set of coordinates in Lagrange form.
1925      * Returns the Lagrange polynomials, see
1926      * Jean-Paul Berrut, Lloyd N. Trefethen: Barycentric Lagrange Interpolation,
1927      * SIAM Review, Vol 46, No 3, (2004) 501-517.
1928      * <p>
1929      * It possesses the method getTerm() which returns the string containing the function term of the polynomial.
1930      * @param {Array} p Array of JXG.Points
1931      * @returns {function} A function of one parameter which returns the value of the polynomial, whose graph runs through the given points.
1932      * @memberof JXG.Math.Numerics
1933      *
1934      * @example
1935      * var p = [];
1936      * p[0] = board.create('point', [-1,2], {size:4});
1937      * p[1] = board.create('point', [0,3], {size:4});
1938      * p[2] = board.create('point', [1,1], {size:4});
1939      * p[3] = board.create('point', [3,-1], {size:4});
1940      * var f = JXG.Math.Numerics.lagrangePolynomial(p);
1941      * var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
1942      *
1943      * </pre><div id="JXGc058aa6b-74d4-41e1-af94-df06169a2d89" class="jxgbox" style="width: 300px; height: 300px;"></div>
1944      * <script type="text/javascript">
1945      *     (function() {
1946      *         var board = JXG.JSXGraph.initBoard('JXGc058aa6b-74d4-41e1-af94-df06169a2d89',
1947      *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
1948      *     var p = [];
1949      *     p[0] = board.create('point', [-1,2], {size:4});
1950      *     p[1] = board.create('point', [0,3], {size:4});
1951      *     p[2] = board.create('point', [1,1], {size:4});
1952      *     p[3] = board.create('point', [3,-1], {size:4});
1953      *     var f = JXG.Math.Numerics.lagrangePolynomial(p);
1954      *     var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
1955      *
1956      *     })();
1957      *
1958      * </script><pre>
1959      *
1960      * @example
1961      * var points = [];
1962      * points[0] = board.create('point', [-1,2], {size:4});
1963      * points[1] = board.create('point', [0, 0], {size:4});
1964      * points[2] = board.create('point', [2, 1], {size:4});
1965      *
1966      * var f = JXG.Math.Numerics.lagrangePolynomial(points);
1967      * var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
1968      * var txt = board.create('text', [-3, -4,  () => f.getTerm(2, 't', ' * ')], {fontSize: 16});
1969      * var txt2 = board.create('text', [-3, -6,  () => f.getCoefficients()], {fontSize: 12});
1970      *
1971      * </pre><div id="JXG73fdaf12-e257-4374-b488-ae063e4eecbb" class="jxgbox" style="width: 300px; height: 300px;"></div>
1972      * <script type="text/javascript">
1973      *     (function() {
1974      *         var board = JXG.JSXGraph.initBoard('JXG73fdaf12-e257-4374-b488-ae063e4eecbb',
1975      *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
1976      *     var points = [];
1977      *     points[0] = board.create('point', [-1,2], {size:4});
1978      *     points[1] = board.create('point', [0, 0], {size:4});
1979      *     points[2] = board.create('point', [2, 1], {size:4});
1980      *
1981      *     var f = JXG.Math.Numerics.lagrangePolynomial(points);
1982      *     var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
1983      *     var txt = board.create('text', [-3, -4,  () => f.getTerm(2, 't', ' * ')], {fontSize: 16});
1984      *     var txt2 = board.create('text', [-3, -6,  () => f.getCoefficients()], {fontSize: 12});
1985      *
1986      *     })();
1987      *
1988      * </script><pre>
1989      *
1990      */
1991     lagrangePolynomial: function (p) {
1992         var w = [],
1993             that = this,
1994             /** @ignore */
1995             fct = function (x, suspendedUpdate) {
1996                 var i, // j,
1997                     k,
1998                     xi,
1999                     s, //M,
2000                     len = p.length,
2001                     num = 0,
2002                     denom = 0;
2003 
2004                 if (!suspendedUpdate) {
2005                     for (i = 0; i < len; i++) {
2006                         w[i] = 1.0;
2007                         xi = p[i].X();
2008 
2009                         for (k = 0; k < len; k++) {
2010                             if (k !== i) {
2011                                 w[i] *= xi - p[k].X();
2012                             }
2013                         }
2014 
2015                         w[i] = 1 / w[i];
2016                     }
2017 
2018                     // M = [];
2019                     // for (k = 0; k < len; k++) {
2020                     //     M.push([1]);
2021                     // }
2022                 }
2023 
2024                 for (i = 0; i < len; i++) {
2025                     xi = p[i].X();
2026 
2027                     if (x === xi) {
2028                         return p[i].Y();
2029                     }
2030 
2031                     s = w[i] / (x - xi);
2032                     denom += s;
2033                     num += s * p[i].Y();
2034                 }
2035 
2036                 return num / denom;
2037             };
2038 
2039         /**
2040          * Get the term of the Lagrange polynomial as string.
2041          * Calls {@link JXG.Math.Numerics#lagrangePolynomialTerm}.
2042          *
2043          * @name JXG.Math.Numerics.lagrangePolynomial#getTerm
2044          * @param {Number} digits Number of digits of the coefficients
2045          * @param {String} param Variable name
2046          * @param {String} dot Dot symbol
2047          * @returns {String} containing the term of Lagrange polynomial as string.
2048          * @see JXG.Math.Numerics#lagrangePolynomialTerm
2049          * @example
2050          * var points = [];
2051          * points[0] = board.create('point', [-1,2], {size:4});
2052          * points[1] = board.create('point', [0, 0], {size:4});
2053          * points[2] = board.create('point', [2, 1], {size:4});
2054          *
2055          * var f = JXG.Math.Numerics.lagrangePolynomial(points);
2056          * var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2057          * var txt = board.create('text', [-3, -4,  () => f.getTerm(2, 't', ' * ')], {fontSize: 16});
2058          *
2059          * </pre><div id="JXG73fdaf12-e257-4374-b488-ae063e4eeccf" class="jxgbox" style="width: 300px; height: 300px;"></div>
2060          * <script type="text/javascript">
2061          *     (function() {
2062          *         var board = JXG.JSXGraph.initBoard('JXG73fdaf12-e257-4374-b488-ae063e4eeccf',
2063          *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
2064          *     var points = [];
2065          *     points[0] = board.create('point', [-1,2], {size:4});
2066          *     points[1] = board.create('point', [0, 0], {size:4});
2067          *     points[2] = board.create('point', [2, 1], {size:4});
2068          *
2069          *     var f = JXG.Math.Numerics.lagrangePolynomial(points);
2070          *     var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2071          *     var txt = board.create('text', [-3, -4,  () => f.getTerm(2, 't', ' * ')], {fontSize: 16});
2072          *
2073          *     })();
2074          *
2075          * </script><pre>
2076          *
2077          */
2078         fct.getTerm = function (digits, param, dot) {
2079             return that.lagrangePolynomialTerm(p, digits, param, dot)();
2080         };
2081 
2082         /**
2083          * Get the coefficients of the Lagrange polynomial as array. The leading
2084          * coefficient is at position 0.
2085          * Calls {@link JXG.Math.Numerics#lagrangePolynomialCoefficients}.
2086          *
2087          * @name JXG.Math.Numerics.lagrangePolynomial#getCoefficients
2088          * @returns {Array} containing the coefficients of the Lagrange polynomial.
2089          * @see JXG.Math.Numerics.lagrangePolynomial#getTerm
2090          * @see JXG.Math.Numerics#lagrangePolynomialTerm
2091          * @see JXG.Math.Numerics#lagrangePolynomialCoefficients
2092          * @example
2093          * var points = [];
2094          * points[0] = board.create('point', [-1,2], {size:4});
2095          * points[1] = board.create('point', [0, 0], {size:4});
2096          * points[2] = board.create('point', [2, 1], {size:4});
2097          *
2098          * var f = JXG.Math.Numerics.lagrangePolynomial(points);
2099          * var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2100          * var txt = board.create('text', [1, -4,  () => f.getCoefficients()], {fontSize: 10});
2101          *
2102          * </pre><div id="JXG52a883a5-2e0c-4caf-8f84-8650c173c365" class="jxgbox" style="width: 300px; height: 300px;"></div>
2103          * <script type="text/javascript">
2104          *     (function() {
2105          *         var board = JXG.JSXGraph.initBoard('JXG52a883a5-2e0c-4caf-8f84-8650c173c365',
2106          *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
2107          *     var points = [];
2108          *     points[0] = board.create('point', [-1,2], {size:4});
2109          *     points[1] = board.create('point', [0, 0], {size:4});
2110          *     points[2] = board.create('point', [2, 1], {size:4});
2111          *
2112          *     var f = JXG.Math.Numerics.lagrangePolynomial(points);
2113          *     var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2114          *     var txt = board.create('text', [1, -4,  () => f.getCoefficients()], {fontSize: 10});
2115          *
2116          *     })();
2117          *
2118          * </script><pre>
2119          *
2120          */
2121         fct.getCoefficients = function () {
2122             return that.lagrangePolynomialCoefficients(p)();
2123         };
2124 
2125         return fct;
2126     },
2127 
2128     /**
2129      * Determine the Lagrange polynomial through an array of points and
2130      * return the term of the polynomial as string.
2131      *
2132      * @param {Array} points Array of JXG.Points
2133      * @param {Number} digits Number of decimal digits of the coefficients
2134      * @param {String} param Name of the parameter. Default: 'x'.
2135      * @param {String} dot Multiplication symbol. Default: ' * '.
2136      * @returns {Function} returning the Lagrange polynomial term through
2137      *    the supplied points as string
2138      * @memberof JXG.Math.Numerics
2139      *
2140      * @example
2141      * var points = [];
2142      * points[0] = board.create('point', [-1,2], {size:4});
2143      * points[1] = board.create('point', [0, 0], {size:4});
2144      * points[2] = board.create('point', [2, 1], {size:4});
2145      *
2146      * var f = JXG.Math.Numerics.lagrangePolynomial(points);
2147      * var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2148      *
2149      * var f_txt = JXG.Math.Numerics.lagrangePolynomialTerm(points, 2, 't', ' * ');
2150      * var txt = board.create('text', [-3, -4, f_txt], {fontSize: 16});
2151      *
2152      * </pre><div id="JXGd45e9e96-7526-486d-aa43-e1178d5f2baa" class="jxgbox" style="width: 300px; height: 300px;"></div>
2153      * <script type="text/javascript">
2154      *     (function() {
2155      *         var board = JXG.JSXGraph.initBoard('JXGd45e9e96-7526-486d-aa43-e1178d5f2baa',
2156      *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
2157      *     var points = [];
2158      *     points[0] = board.create('point', [-1,2], {size:4});
2159      *     points[1] = board.create('point', [0, 0], {size:4});
2160      *     points[2] = board.create('point', [2, 1], {size:4});
2161      *
2162      *     var f = JXG.Math.Numerics.lagrangePolynomial(points);
2163      *     var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2164      *
2165      *     var f_txt = JXG.Math.Numerics.lagrangePolynomialTerm(points, 2, 't', ' * ');
2166      *     var txt = board.create('text', [-3, -4, f_txt], {fontSize: 16});
2167      *
2168      *     })();
2169      *
2170      * </script><pre>
2171      *
2172      */
2173     lagrangePolynomialTerm: function (points, digits, param, dot) {
2174         var that = this;
2175 
2176         return function () {
2177             var len = points.length,
2178                 coeffs = [],
2179                 isLeading = true,
2180                 n, t, j, c;
2181 
2182             param = param || "x";
2183             if (dot === undefined) {
2184                 dot = " * ";
2185             }
2186 
2187             n = len - 1; // (Max) degree of the polynomial
2188             coeffs = that.lagrangePolynomialCoefficients(points)();
2189 
2190             t = "";
2191             for (j = 0; j < coeffs.length; j++) {
2192                 c = coeffs[j];
2193                 if (Math.abs(c) < Mat.eps) {
2194                     continue;
2195                 }
2196                 if (JXG.exists(digits)) {
2197                     c = Env._round10(c, -digits);
2198                 }
2199                 if (isLeading) {
2200                     t += c > 0 ? c : "-" + -c;
2201                     isLeading = false;
2202                 } else {
2203                     t += c > 0 ? " + " + c : " - " + -c;
2204                 }
2205 
2206                 if (n - j > 1) {
2207                     t += dot + param + "^" + (n - j);
2208                 } else if (n - j === 1) {
2209                     t += dot + param;
2210                 }
2211             }
2212             return t; // board.jc.manipulate('f = map(x) -> ' + t + ';');
2213         };
2214     },
2215 
2216     /**
2217      * Determine the Lagrange polynomial through an array of points and
2218      * return the coefficients of the polynomial as array.
2219      * The leading coefficient is at position 0.
2220      *
2221      * @param {Array} points Array of JXG.Points
2222      * @returns {Function} returning the coefficients of the Lagrange polynomial through
2223      *    the supplied points.
2224      * @memberof JXG.Math.Numerics
2225      *
2226      * @example
2227      * var points = [];
2228      * points[0] = board.create('point', [-1,2], {size:4});
2229      * points[1] = board.create('point', [0, 0], {size:4});
2230      * points[2] = board.create('point', [2, 1], {size:4});
2231      *
2232      * var f = JXG.Math.Numerics.lagrangePolynomial(points);
2233      * var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2234      *
2235      * var f_arr = JXG.Math.Numerics.lagrangePolynomialCoefficients(points);
2236      * var txt = board.create('text', [1, -4, f_arr], {fontSize: 10});
2237      *
2238      * </pre><div id="JXG1778f0d1-a420-473f-99e8-1755ef4be97e" class="jxgbox" style="width: 300px; height: 300px;"></div>
2239      * <script type="text/javascript">
2240      *     (function() {
2241      *         var board = JXG.JSXGraph.initBoard('JXG1778f0d1-a420-473f-99e8-1755ef4be97e',
2242      *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
2243      *     var points = [];
2244      *     points[0] = board.create('point', [-1,2], {size:4});
2245      *     points[1] = board.create('point', [0, 0], {size:4});
2246      *     points[2] = board.create('point', [2, 1], {size:4});
2247      *
2248      *     var f = JXG.Math.Numerics.lagrangePolynomial(points);
2249      *     var graph = board.create('functiongraph', [f,-10, 10], {strokeWidth:3});
2250      *
2251      *     var f_arr = JXG.Math.Numerics.lagrangePolynomialCoefficients(points);
2252      *     var txt = board.create('text', [1, -4, f_arr], {fontSize: 10});
2253      *
2254      *     })();
2255      *
2256      * </script><pre>
2257      *
2258      */
2259     lagrangePolynomialCoefficients: function (points) {
2260         return function () {
2261             var len = points.length,
2262                 zeroes = [],
2263                 coeffs = [],
2264                 coeffs_sum = [],
2265                 i, j, c, p;
2266 
2267             // n = len - 1; // (Max) degree of the polynomial
2268             for (j = 0; j < len; j++) {
2269                 coeffs_sum[j] = 0;
2270             }
2271 
2272             for (i = 0; i < len; i++) {
2273                 c = points[i].Y();
2274                 p = points[i].X();
2275                 zeroes = [];
2276                 for (j = 0; j < len; j++) {
2277                     if (j !== i) {
2278                         c /= p - points[j].X();
2279                         zeroes.push(points[j].X());
2280                     }
2281                 }
2282                 coeffs = [1].concat(Mat.Vieta(zeroes));
2283                 for (j = 0; j < coeffs.length; j++) {
2284                     coeffs_sum[j] += (j % 2 === 1 ? -1 : 1) * coeffs[j] * c;
2285                 }
2286             }
2287 
2288             return coeffs_sum;
2289         };
2290     },
2291 
2292     /**
2293      * Determine the coefficients of a cardinal spline polynom, See
2294      * https://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections
2295      * @param  {Number} x1 point 1
2296      * @param  {Number} x2 point 2
2297      * @param  {Number} t1 tangent slope 1
2298      * @param  {Number} t2 tangent slope 2
2299      * @return {Array}    coefficents array c for the polynomial t maps to
2300      * c[0] + c[1]*t + c[2]*t*t + c[3]*t*t*t
2301      */
2302     _initCubicPoly: function (x1, x2, t1, t2) {
2303         return [x1, t1, -3 * x1 + 3 * x2 - 2 * t1 - t2, 2 * x1 - 2 * x2 + t1 + t2];
2304     },
2305 
2306     /**
2307      * Computes the cubic cardinal spline curve through a given set of points. The curve
2308      * is uniformly parametrized.
2309      * Two artificial control points at the beginning and the end are added.
2310      *
2311      * The implementation (especially the centripetal parametrization) is from
2312      * https://stackoverflow.com/questions/9489736/catmull-rom-curve-with-no-cusps-and-no-self-intersections .
2313      * @param {Array} points Array consisting of JXG.Points.
2314      * @param {Number|Function} tau The tension parameter, either a constant number or a function returning a number. This number is between 0 and 1.
2315      * tau=1/2 give Catmull-Rom splines.
2316      * @param {String} type (Optional) parameter which allows to choose between "uniform" (default) and
2317      * "centripetal" parameterization. Thus the two possible values are "uniform" or "centripetal".
2318      * @returns {Array} An Array consisting of four components: Two functions each of one parameter t
2319      * which return the x resp. y coordinates of the Catmull-Rom-spline curve in t, a zero value,
2320      * and a function simply returning the length of the points array
2321      * minus three.
2322      * @memberof JXG.Math.Numerics
2323      */
2324     CardinalSpline: function (points, tau_param, type) {
2325         var p,
2326             coeffs = [],
2327             makeFct,
2328             tau, _tau,
2329             that = this;
2330 
2331         if (Type.isFunction(tau_param)) {
2332             _tau = tau_param;
2333         } else {
2334             _tau = function () {
2335                 return tau_param;
2336             };
2337         }
2338 
2339         if (type === undefined) {
2340             type = "uniform";
2341         }
2342 
2343         /** @ignore */
2344         makeFct = function (which) {
2345             return function (t, suspendedUpdate) {
2346                 var s,
2347                     c,
2348                     // control point at the beginning and at the end
2349                     first,
2350                     last,
2351                     t1,
2352                     t2,
2353                     dt0,
2354                     dt1,
2355                     dt2,
2356                     // dx, dy,
2357                     len;
2358 
2359                 if (points.length < 2) {
2360                     return NaN;
2361                 }
2362 
2363                 if (!suspendedUpdate) {
2364                     tau = _tau();
2365 
2366                     // New point list p: [first, points ..., last]
2367                     first = {
2368                         X: function () {
2369                             return 2 * points[0].X() - points[1].X();
2370                         },
2371                         Y: function () {
2372                             return 2 * points[0].Y() - points[1].Y();
2373                         },
2374                         Dist: function (p) {
2375                             var dx = this.X() - p.X(),
2376                                 dy = this.Y() - p.Y();
2377                             return Mat.hypot(dx, dy);
2378                         }
2379                     };
2380 
2381                     last = {
2382                         X: function () {
2383                             return (
2384                                 2 * points[points.length - 1].X() -
2385                                 points[points.length - 2].X()
2386                             );
2387                         },
2388                         Y: function () {
2389                             return (
2390                                 2 * points[points.length - 1].Y() -
2391                                 points[points.length - 2].Y()
2392                             );
2393                         },
2394                         Dist: function (p) {
2395                             var dx = this.X() - p.X(),
2396                                 dy = this.Y() - p.Y();
2397                             return Mat.hypot(dx, dy);
2398                         }
2399                     };
2400 
2401                     p = [first].concat(points, [last]);
2402                     len = p.length;
2403 
2404                     coeffs[which] = [];
2405 
2406                     for (s = 0; s < len - 3; s++) {
2407                         if (type === "centripetal") {
2408                             // The order is important, since p[0].coords === undefined
2409                             dt0 = p[s].Dist(p[s + 1]);
2410                             dt1 = p[s + 2].Dist(p[s + 1]);
2411                             dt2 = p[s + 3].Dist(p[s + 2]);
2412 
2413                             dt0 = Math.sqrt(dt0);
2414                             dt1 = Math.sqrt(dt1);
2415                             dt2 = Math.sqrt(dt2);
2416 
2417                             if (dt1 < Mat.eps) {
2418                                 dt1 = 1.0;
2419                             }
2420                             if (dt0 < Mat.eps) {
2421                                 dt0 = dt1;
2422                             }
2423                             if (dt2 < Mat.eps) {
2424                                 dt2 = dt1;
2425                             }
2426 
2427                             t1 =
2428                                 (p[s + 1][which]() - p[s][which]()) / dt0 -
2429                                 (p[s + 2][which]() - p[s][which]()) / (dt1 + dt0) +
2430                                 (p[s + 2][which]() - p[s + 1][which]()) / dt1;
2431 
2432                             t2 =
2433                                 (p[s + 2][which]() - p[s + 1][which]()) / dt1 -
2434                                 (p[s + 3][which]() - p[s + 1][which]()) / (dt2 + dt1) +
2435                                 (p[s + 3][which]() - p[s + 2][which]()) / dt2;
2436 
2437                             t1 *= dt1;
2438                             t2 *= dt1;
2439 
2440                             coeffs[which][s] = that._initCubicPoly(
2441                                 p[s + 1][which](),
2442                                 p[s + 2][which](),
2443                                 tau * t1,
2444                                 tau * t2
2445                             );
2446                         } else {
2447                             coeffs[which][s] = that._initCubicPoly(
2448                                 p[s + 1][which](),
2449                                 p[s + 2][which](),
2450                                 tau * (p[s + 2][which]() - p[s][which]()),
2451                                 tau * (p[s + 3][which]() - p[s + 1][which]())
2452                             );
2453                         }
2454                     }
2455                 }
2456 
2457                 if (isNaN(t)) {
2458                     return NaN;
2459                 }
2460 
2461                 len = points.length;
2462                 // This is necessary for our advanced plotting algorithm:
2463                 if (t <= 0.0) {
2464                     return points[0][which]();
2465                 }
2466                 if (t >= len) {
2467                     return points[len - 1][which]();
2468                 }
2469 
2470                 s = Math.floor(t);
2471                 if (s === t) {
2472                     return points[s][which]();
2473                 }
2474 
2475                 t -= s;
2476                 c = coeffs[which][s];
2477                 if (c === undefined) {
2478                     return NaN;
2479                 }
2480 
2481                 return ((c[3] * t + c[2]) * t + c[1]) * t + c[0];
2482             };
2483         };
2484 
2485         return [
2486             makeFct("X"),
2487             makeFct("Y"),
2488             0,
2489             function () {
2490                 return points.length - 1;
2491             }
2492         ];
2493     },
2494 
2495     /**
2496      * Computes the cubic Catmull-Rom spline curve through a given set of points. The curve
2497      * is uniformly parametrized. The curve is the cardinal spline curve for tau=0.5.
2498      * Two artificial control points at the beginning and the end are added.
2499      * @param {Array} points Array consisting of JXG.Points.
2500      * @param {String} type (Optional) parameter which allows to choose between "uniform" (default) and
2501      * "centripetal" parameterization. Thus the two possible values are "uniform" or "centripetal".
2502      * @returns {Array} An Array consisting of four components: Two functions each of one parameter t
2503      * which return the x resp. y coordinates of the Catmull-Rom-spline curve in t, a zero value, and a function simply
2504      * returning the length of the points array minus three.
2505      * @memberof JXG.Math.Numerics
2506      */
2507     CatmullRomSpline: function (points, type) {
2508         return this.CardinalSpline(points, 0.5, type);
2509     },
2510 
2511     /**
2512      * Computes the regression polynomial of a given degree through a given set of coordinates.
2513      * Returns the regression polynomial function.
2514      * @param {Number|function|Slider} degree number, function or slider.
2515      * Either
2516      * @param {Array} dataX Array containing either the x-coordinates of the data set or both coordinates in
2517      * an array of {@link JXG.Point}s or {@link JXG.Coords}.
2518      * In the latter case, the <tt>dataY</tt> parameter will be ignored.
2519      * @param {Array} dataY Array containing the y-coordinates of the data set,
2520      * @returns {function} A function of one parameter which returns the value of the regression polynomial of the given degree.
2521      * It possesses the method getTerm() which returns the string containing the function term of the polynomial.
2522      * The function returned will throw an exception, if the data set is malformed.
2523      * @memberof JXG.Math.Numerics
2524      */
2525     regressionPolynomial: function (degree, dataX, dataY) {
2526         var coeffs, deg, dX, dY, inputType, fct,
2527             term = "";
2528 
2529         // Slider
2530         if (Type.isPoint(degree) && Type.isFunction(degree.Value)) {
2531             /** @ignore */
2532             deg = function () {
2533                 return degree.Value();
2534             };
2535             // function
2536         } else if (Type.isFunction(degree)) {
2537             deg = degree;
2538             // number
2539         } else if (Type.isNumber(degree)) {
2540             /** @ignore */
2541             deg = function () {
2542                 return degree;
2543             };
2544         } else {
2545             throw new Error(
2546                 "JSXGraph: Can't create regressionPolynomial from degree of type'" +
2547                 typeof degree +
2548                 "'."
2549             );
2550         }
2551 
2552         // Parameters degree, dataX, dataY
2553         if (arguments.length === 3 && Type.isArray(dataX) && Type.isArray(dataY)) {
2554             inputType = 0;
2555             // Parameters degree, point array
2556         } else if (
2557             arguments.length === 2 &&
2558             Type.isArray(dataX) &&
2559             dataX.length > 0 &&
2560             Type.isPoint(dataX[0])
2561         ) {
2562             inputType = 1;
2563         } else if (
2564             arguments.length === 2 &&
2565             Type.isArray(dataX) &&
2566             dataX.length > 0 &&
2567             dataX[0].usrCoords &&
2568             dataX[0].scrCoords
2569         ) {
2570             inputType = 2;
2571         } else {
2572             throw new Error("JSXGraph: Can't create regressionPolynomial. Wrong parameters.");
2573         }
2574 
2575         /** @ignore */
2576         fct = function (x, suspendedUpdate) {
2577             var i, j,
2578                 M, MT, y, B, c, s, d,
2579                 // input data
2580                 len = dataX.length;
2581 
2582             d = Math.floor(deg());
2583 
2584             if (!suspendedUpdate) {
2585                 // point list as input
2586                 if (inputType === 1) {
2587                     dX = [];
2588                     dY = [];
2589 
2590                     for (i = 0; i < len; i++) {
2591                         dX[i] = dataX[i].X();
2592                         dY[i] = dataX[i].Y();
2593                     }
2594                 }
2595 
2596                 if (inputType === 2) {
2597                     dX = [];
2598                     dY = [];
2599 
2600                     for (i = 0; i < len; i++) {
2601                         dX[i] = dataX[i].usrCoords[1];
2602                         dY[i] = dataX[i].usrCoords[2];
2603                     }
2604                 }
2605 
2606                 // check for functions
2607                 if (inputType === 0) {
2608                     dX = [];
2609                     dY = [];
2610 
2611                     for (i = 0; i < len; i++) {
2612                         if (Type.isFunction(dataX[i])) {
2613                             dX.push(dataX[i]());
2614                         } else {
2615                             dX.push(dataX[i]);
2616                         }
2617 
2618                         if (Type.isFunction(dataY[i])) {
2619                             dY.push(dataY[i]());
2620                         } else {
2621                             dY.push(dataY[i]);
2622                         }
2623                     }
2624                 }
2625 
2626                 M = [];
2627                 for (j = 0; j < len; j++) {
2628                     M.push([1]);
2629                 }
2630                 for (i = 1; i <= d; i++) {
2631                     for (j = 0; j < len; j++) {
2632                         M[j][i] = M[j][i - 1] * dX[j];
2633                     }
2634                 }
2635 
2636                 y = dY;
2637                 MT = Mat.transpose(M);
2638                 B = Mat.matMatMult(MT, M);
2639                 c = Mat.matVecMult(MT, y);
2640                 coeffs = Mat.Numerics.Gauss(B, c);
2641                 term = Mat.Numerics.generatePolynomialTerm(coeffs, d, "x", 3);
2642             }
2643 
2644             // Horner's scheme to evaluate polynomial
2645             s = coeffs[d];
2646             for (i = d - 1; i >= 0; i--) {
2647                 s = s * x + coeffs[i];
2648             }
2649 
2650             return s;
2651         };
2652 
2653         /** @ignore */
2654         fct.getTerm = function () {
2655             return term;
2656         };
2657 
2658         return fct;
2659     },
2660 
2661     /**
2662      * Computes the cubic Bezier curve through a given set of points.
2663      * @param {Array} points Array consisting of 3*k+1 {@link JXG.Points}.
2664      * The points at position k with k mod 3 = 0 are the data points,
2665      * points at position k with k mod 3 = 1 or 2 are the control points.
2666      * @returns {Array} An array consisting of two functions of one parameter t which return the
2667      * x resp. y coordinates of the Bezier curve in t, one zero value, and a third function accepting
2668      * no parameters and returning one third of the length of the points.
2669      * @memberof JXG.Math.Numerics
2670      */
2671     bezier: function (points) {
2672         var len,
2673             flen,
2674             /** @ignore */
2675             makeFct = function (which) {
2676                 return function (t, suspendedUpdate) {
2677                     var z = Math.floor(t) * 3,
2678                         t0 = t % 1,
2679                         t1 = 1 - t0;
2680 
2681                     if (!suspendedUpdate) {
2682                         flen = 3 * Math.floor((points.length - 1) / 3);
2683                         len = Math.floor(flen / 3);
2684                     }
2685 
2686                     if (t < 0) {
2687                         return points[0][which]();
2688                     }
2689 
2690                     if (t >= len) {
2691                         return points[flen][which]();
2692                     }
2693 
2694                     if (isNaN(t)) {
2695                         return NaN;
2696                     }
2697 
2698                     return (
2699                         t1 * t1 * (t1 * points[z][which]() + 3 * t0 * points[z + 1][which]()) +
2700                         (3 * t1 * points[z + 2][which]() + t0 * points[z + 3][which]()) *
2701                         t0 *
2702                         t0
2703                     );
2704                 };
2705             };
2706 
2707         return [
2708             makeFct("X"),
2709             makeFct("Y"),
2710             0,
2711             function () {
2712                 return Math.floor(points.length / 3);
2713             }
2714         ];
2715     },
2716 
2717     /**
2718      * Computes the B-spline curve of order k (order = degree+1) through a given set of points.
2719      * @param {Array} points Array consisting of JXG.Points.
2720      * @param {Number} order Order of the B-spline curve.
2721      * @returns {Array} An Array consisting of four components: Two functions each of one parameter t
2722      * which return the x resp. y coordinates of the B-spline curve in t, a zero value, and a function simply
2723      * returning the length of the points array minus one.
2724      * @memberof JXG.Math.Numerics
2725      */
2726     bspline: function (points, order) {
2727         var knots,
2728             _knotVector = function (n, k) {
2729                 var j,
2730                     kn = [];
2731 
2732                 for (j = 0; j < n + k + 1; j++) {
2733                     if (j < k) {
2734                         kn[j] = 0.0;
2735                     } else if (j <= n) {
2736                         kn[j] = j - k + 1;
2737                     } else {
2738                         kn[j] = n - k + 2;
2739                     }
2740                 }
2741 
2742                 return kn;
2743             },
2744             _evalBasisFuncs = function (t, kn, k, s) {
2745                 var i,
2746                     j,
2747                     a,
2748                     b,
2749                     den,
2750                     N = [];
2751 
2752                 if (kn[s] <= t && t < kn[s + 1]) {
2753                     N[s] = 1;
2754                 } else {
2755                     N[s] = 0;
2756                 }
2757 
2758                 for (i = 2; i <= k; i++) {
2759                     for (j = s - i + 1; j <= s; j++) {
2760                         if (j <= s - i + 1 || j < 0) {
2761                             a = 0.0;
2762                         } else {
2763                             a = N[j];
2764                         }
2765 
2766                         if (j >= s) {
2767                             b = 0.0;
2768                         } else {
2769                             b = N[j + 1];
2770                         }
2771 
2772                         den = kn[j + i - 1] - kn[j];
2773 
2774                         if (den === 0) {
2775                             N[j] = 0;
2776                         } else {
2777                             N[j] = ((t - kn[j]) / den) * a;
2778                         }
2779 
2780                         den = kn[j + i] - kn[j + 1];
2781 
2782                         if (den !== 0) {
2783                             N[j] += ((kn[j + i] - t) / den) * b;
2784                         }
2785                     }
2786                 }
2787                 return N;
2788             },
2789             /** @ignore */
2790             makeFct = function (which) {
2791                 return function (t, suspendedUpdate) {
2792                     var y,
2793                         j,
2794                         s,
2795                         N = [],
2796                         len = points.length,
2797                         n = len - 1,
2798                         k = order;
2799 
2800                     if (n <= 0) {
2801                         return NaN;
2802                     }
2803 
2804                     if (n + 2 <= k) {
2805                         k = n + 1;
2806                     }
2807 
2808                     if (t <= 0) {
2809                         return points[0][which]();
2810                     }
2811 
2812                     if (t >= n - k + 2) {
2813                         return points[n][which]();
2814                     }
2815 
2816                     s = Math.floor(t) + k - 1;
2817                     knots = _knotVector(n, k);
2818                     N = _evalBasisFuncs(t, knots, k, s);
2819 
2820                     y = 0.0;
2821                     for (j = s - k + 1; j <= s; j++) {
2822                         if (j < len && j >= 0) {
2823                             y += points[j][which]() * N[j];
2824                         }
2825                     }
2826 
2827                     return y;
2828                 };
2829             };
2830 
2831         return [
2832             makeFct("X"),
2833             makeFct("Y"),
2834             0,
2835             function () {
2836                 return points.length - 1;
2837             }
2838         ];
2839     },
2840 
2841     /**
2842      * Numerical (symmetric) approximation of derivative. suspendUpdate is piped through,
2843      * see {@link JXG.Curve#updateCurve}
2844      * and {@link JXG.Curve#hasPoint}.
2845      * @param {function} f Function in one variable to be differentiated.
2846      * @param {object} [obj] Optional object that is treated as "this" in the function body. This is useful, if the function is a
2847      * method of an object and contains a reference to its parent object via "this".
2848      * @returns {function} Derivative function of a given function f.
2849      * @memberof JXG.Math.Numerics
2850      */
2851     D: function (f, obj) {
2852         if (!Type.exists(obj)) {
2853             return function (x, suspendedUpdate) {
2854                 var h = 0.00001,
2855                     h2 = h * 2.0;
2856 
2857                 // Experiments with Richardsons rule
2858                 /*
2859                     var phi = (f(x + h, suspendedUpdate) - f(x - h, suspendedUpdate)) / h2;
2860                     var phi2;
2861                     h *= 0.5;
2862                     h2 *= 0.5;
2863                     phi2 = (f(x + h, suspendedUpdate) - f(x - h, suspendedUpdate)) / h2;
2864 
2865                     return phi2 + (phi2 - phi) / 3.0;
2866                     */
2867                 return (f(x + h, suspendedUpdate) - f(x - h, suspendedUpdate)) / h2;
2868             };
2869         }
2870 
2871         return function (x, suspendedUpdate) {
2872             var h = 0.00001,
2873                 h2 = h * 2.0;
2874 
2875             return (
2876                 (f.apply(obj, [x + h, suspendedUpdate]) -
2877                     f.apply(obj, [x - h, suspendedUpdate])) /
2878                 h2
2879             );
2880         };
2881     },
2882 
2883     /**
2884      * Evaluate the function term for {@see #riemann}.
2885      * @private
2886      * @param {Number} x function argument
2887      * @param {function} f JavaScript function returning a number
2888      * @param {String} type Name of the Riemann sum type, e.g. 'lower', see {@see #riemann}.
2889      * @param {Number} delta Width of the bars in user coordinates
2890      * @returns {Number} Upper (delta > 0) or lower (delta < 0) value of the bar containing x of the Riemann sum.
2891      *
2892      * @memberof JXG.Math.Numerics
2893      */
2894     _riemannValue: function (x, f, type, delta) {
2895         var y, y1, x1, delta1;
2896 
2897         if (delta < 0) {
2898             // delta is negative if the lower function term is evaluated
2899             if (type !== "trapezoidal") {
2900                 x = x + delta;
2901             }
2902             delta *= -1;
2903             if (type === "lower") {
2904                 type = "upper";
2905             } else if (type === "upper") {
2906                 type = "lower";
2907             }
2908         }
2909 
2910         delta1 = delta * 0.01; // for 'lower' and 'upper'
2911 
2912         if (type === "right") {
2913             y = f(x + delta);
2914         } else if (type === "middle") {
2915             y = f(x + delta * 0.5);
2916         } else if (type === "left" || type === "trapezoidal") {
2917             y = f(x);
2918         } else if (type === "lower") {
2919             y = f(x);
2920 
2921             for (x1 = x + delta1; x1 <= x + delta; x1 += delta1) {
2922                 y1 = f(x1);
2923 
2924                 if (y1 < y) {
2925                     y = y1;
2926                 }
2927             }
2928 
2929             y1 = f(x + delta);
2930             if (y1 < y) {
2931                 y = y1;
2932             }
2933         } else if (type === "upper") {
2934             y = f(x);
2935 
2936             for (x1 = x + delta1; x1 <= x + delta; x1 += delta1) {
2937                 y1 = f(x1);
2938                 if (y1 > y) {
2939                     y = y1;
2940                 }
2941             }
2942 
2943             y1 = f(x + delta);
2944             if (y1 > y) {
2945                 y = y1;
2946             }
2947         } else if (type === "random") {
2948             y = f(x + delta * Math.random());
2949         } else if (type === "simpson") {
2950             y = (f(x) + 4 * f(x + delta * 0.5) + f(x + delta)) / 6.0;
2951         } else {
2952             y = f(x); // default is lower
2953         }
2954 
2955         return y;
2956     },
2957 
2958     /**
2959      * Helper function to create curve which displays Riemann sums.
2960      * Compute coordinates for the rectangles showing the Riemann sum.
2961      * <p>
2962      * In case of type "simpson" and "trapezoidal", the horizontal line approximating the function value
2963      * is replaced by a parabola or a secant. IN case of "simpson",
2964      * the parabola is approximated visually by a polygonal chain of fixed step width.
2965      *
2966      * @param {Function|Array} f Function or array of two functions.
2967      * If f is a function the integral of this function is approximated by the Riemann sum.
2968      * If f is an array consisting of two functions the area between the two functions is filled
2969      * by the Riemann sum bars.
2970      * @param {Number} n number of rectangles.
2971      * @param {String} type Type of approximation. Possible values are: 'left', 'right', 'middle', 'lower', 'upper', 'random', 'simpson', or 'trapezoidal'.
2972      * "simpson" is Simpson's 1/3 rule.
2973      * @param {Number} start Left border of the approximation interval
2974      * @param {Number} end Right border of the approximation interval
2975      * @returns {Array} An array of two arrays containing the x and y coordinates for the rectangles showing the Riemann sum. This
2976      * array may be used as parent array of a {@link JXG.Curve}. The third parameteris the riemann sum, i.e. the sum of the volumes of all
2977      * rectangles.
2978      * @memberof JXG.Math.Numerics
2979      */
2980     riemann: function (gf, n, type, start, end) {
2981         var i, delta,
2982             k, a, b, c, f0, f1, f2, xx, h,
2983             steps = 30, // Fixed step width for Simpson's rule
2984             xarr = [],
2985             yarr = [],
2986             x = start,
2987             sum = 0,
2988             y, f, g;
2989 
2990         if (Type.isArray(gf)) {
2991             g = gf[0];
2992             f = gf[1];
2993         } else {
2994             f = gf;
2995         }
2996 
2997         n = Math.floor(n);
2998 
2999         if (n <= 0) {
3000             return [xarr, yarr, sum];
3001         }
3002 
3003         delta = (end - start) / n;
3004 
3005         // "Upper" horizontal line defined by function
3006         for (i = 0; i < n; i++) {
3007             if (type === "simpson") {
3008                 sum += this._riemannValue(x, f, type, delta) * delta;
3009 
3010                 h = delta * 0.5;
3011                 f0 = f(x);
3012                 f1 = f(x + h);
3013                 f2 = f(x + 2 * h);
3014 
3015                 a = (f2 + f0 - 2 * f1) / (h * h) * 0.5;
3016                 b = (f2 - f0) / (2 * h);
3017                 c = f1;
3018                 for (k = 0; k < steps; k++) {
3019                     xx = k * delta / steps - h;
3020                     xarr.push(x + xx + h);
3021                     yarr.push(a * xx * xx + b * xx + c);
3022                 }
3023                 x += delta;
3024                 y = f2;
3025             } else {
3026                 y = this._riemannValue(x, f, type, delta);
3027                 xarr.push(x);
3028                 yarr.push(y);
3029 
3030                 x += delta;
3031                 if (type === "trapezoidal") {
3032                     f2 = f(x);
3033                     sum += (y + f2) * 0.5 * delta;
3034                     y = f2;
3035                 } else {
3036                     sum += y * delta;
3037                 }
3038 
3039                 xarr.push(x);
3040                 yarr.push(y);
3041             }
3042             xarr.push(x);
3043             yarr.push(y);
3044         }
3045 
3046         // "Lower" horizontal line
3047         // Go backwards
3048         for (i = 0; i < n; i++) {
3049             if (type === "simpson" && g) {
3050                 sum -= this._riemannValue(x, g, type, -delta) * delta;
3051 
3052                 h = delta * 0.5;
3053                 f0 = g(x);
3054                 f1 = g(x - h);
3055                 f2 = g(x - 2 * h);
3056 
3057                 a = (f2 + f0 - 2 * f1) / (h * h) * 0.5;
3058                 b = (f2 - f0) / (2 * h);
3059                 c = f1;
3060                 for (k = 0; k < steps; k++) {
3061                     xx = k * delta / steps - h;
3062                     xarr.push(x - xx - h);
3063                     yarr.push(a * xx * xx + b * xx + c);
3064                 }
3065                 x -= delta;
3066                 y = f2;
3067             } else {
3068                 if (g) {
3069                     y = this._riemannValue(x, g, type, -delta);
3070                 } else {
3071                     y = 0.0;
3072                 }
3073                 xarr.push(x);
3074                 yarr.push(y);
3075 
3076                 x -= delta;
3077                 if (g) {
3078                     if (type === "trapezoidal") {
3079                         f2 = g(x);
3080                         sum -= (y + f2) * 0.5 * delta;
3081                         y = f2;
3082                     } else {
3083                         sum -= y * delta;
3084                     }
3085                 }
3086             }
3087             xarr.push(x);
3088             yarr.push(y);
3089 
3090             // Draw the vertical lines
3091             xarr.push(x);
3092             yarr.push(f(x));
3093         }
3094 
3095         return [xarr, yarr, sum];
3096     },
3097 
3098     /**
3099      * Approximate the integral by Riemann sums.
3100      * Compute the area described by the riemann sum rectangles.
3101      *
3102      * If there is an element of type {@link Riemannsum}, then it is more efficient
3103      * to use the method JXG.Curve.Value() of this element instead.
3104      *
3105      * @param {Function_Array} f Function or array of two functions.
3106      * If f is a function the integral of this function is approximated by the Riemann sum.
3107      * If f is an array consisting of two functions the area between the two functions is approximated
3108      * by the Riemann sum.
3109      * @param {Number} n number of rectangles.
3110      * @param {String} type Type of approximation. Possible values are: 'left', 'right', 'middle', 'lower', 'upper', 'random', 'simpson' or 'trapezoidal'.
3111      *
3112      * @param {Number} start Left border of the approximation interval
3113      * @param {Number} end Right border of the approximation interval
3114      * @returns {Number} The sum of the areas of the rectangles.
3115      * @memberof JXG.Math.Numerics
3116      */
3117     riemannsum: function (f, n, type, start, end) {
3118         JXG.deprecated("Numerics.riemannsum()", "Numerics.riemann()[2]");
3119         return this.riemann(f, n, type, start, end)[2];
3120     },
3121 
3122     /**
3123      * Solve initial value problems numerically using <i>explicit</i> Runge-Kutta methods.
3124      * See {@link https://en.wikipedia.org/wiki/Runge-Kutta_methods} for more information on the algorithm.
3125      * @param {object|String} butcher Butcher tableau describing the Runge-Kutta method to use. This can be either a string describing
3126      * a Runge-Kutta method with a Butcher tableau predefined in JSXGraph like 'euler', 'heun', 'rk4' or an object providing the structure
3127      * <pre>
3128      * {
3129      *     s: <Number>,
3130      *     A: <matrix>,
3131      *     b: <Array>,
3132      *     c: <Array>
3133      * }
3134      * </pre>
3135      * which corresponds to the Butcher tableau structure
3136      * shown here: https://en.wikipedia.org/w/index.php?title=List_of_Runge%E2%80%93Kutta_methods&oldid=357796696 .
3137      * <i>Default</i> is 'euler'.
3138      * @param {Array} x0 Initial value vector. Even if the problem is one-dimensional, the initial value has to be given in an array.
3139      * @param {Array} I Interval on which to integrate.
3140      * @param {Number} N Number of integration intervals, i.e. there are <i>N+1</i> evaluation points.
3141      * @param {function} f Function describing the right hand side of the first order ordinary differential equation, i.e. if the ode
3142      * is given by the equation <pre>dx/dt = f(t, x(t))</pre>. So, f has to take two parameters, a number <tt>t</tt> and a
3143      * vector <tt>x</tt>, and has to return a vector of the same length as <tt>x</tt> has.
3144      * @returns {Array} An array of vectors describing the solution of the ode on the given interval I.
3145      * @example
3146      * // A very simple autonomous system dx(t)/dt = x(t);
3147      * var f = function(t, x) {
3148      *     return [x[0]];
3149      * }
3150      *
3151      * // Solve it with initial value x(0) = 1 on the interval [0, 2]
3152      * // with 20 evaluation points.
3153      * var data = JXG.Math.Numerics.rungeKutta('heun', [1], [0, 2], 20, f);
3154      *
3155      * // Prepare data for plotting the solution of the ode using a curve.
3156      * var dataX = [];
3157      * var dataY = [];
3158      * var h = 0.1;        // (I[1] - I[0])/N  = (2-0)/20
3159      * var i;
3160      * for(i=0; i<data.length; i++) {
3161      *     dataX[i] = i*h;
3162      *     dataY[i] = data[i][0];
3163      * }
3164      * var g = board.create('curve', [dataX, dataY], {strokeWidth:'2px'});
3165      * </pre><div class="jxgbox" id="JXGd2432d04-4ef7-4159-a90b-a2eb8d38c4f6" style="width: 300px; height: 300px;"></div>
3166      * <script type="text/javascript">
3167      * var board = JXG.JSXGraph.initBoard('JXGd2432d04-4ef7-4159-a90b-a2eb8d38c4f6', {boundingbox: [-1, 5, 5, -1], axis: true, showcopyright: false, shownavigation: false});
3168      * var f = function(t, x) {
3169      *     // we have to copy the value.
3170      *     // return x; would just return the reference.
3171      *     return [x[0]];
3172      * }
3173      * var data = JXG.Math.Numerics.rungeKutta('heun', [1], [0, 2], 20, f);
3174      * var dataX = [];
3175      * var dataY = [];
3176      * var h = 0.1;
3177      * for(var i=0; i<data.length; i++) {
3178      *     dataX[i] = i*h;
3179      *     dataY[i] = data[i][0];
3180      * }
3181      * var g = board.create('curve', [dataX, dataY], {strokeColor:'red', strokeWidth:'2px'});
3182      * </script><pre>
3183      * @memberof JXG.Math.Numerics
3184      */
3185     rungeKutta: function (butcher, x0, I, N, f) {
3186         var e,
3187             i, j, k, l, s,
3188             x = [],
3189             y = [],
3190             h = (I[1] - I[0]) / N,
3191             t = I[0],
3192             dim = x0.length,
3193             result = [],
3194             r = 0;
3195 
3196         if (Type.isString(butcher)) {
3197             butcher = predefinedButcher[butcher] || predefinedButcher.euler;
3198         }
3199         s = butcher.s;
3200 
3201         // Don't change x0, so copy it
3202         x = x0.slice();
3203 
3204         for (i = 0; i <= N; i++) {
3205             result[r] = x.slice();
3206 
3207             r++;
3208             k = [];
3209 
3210             for (j = 0; j < s; j++) {
3211                 // Init y = 0
3212                 for (e = 0; e < dim; e++) {
3213                     y[e] = 0.0;
3214                 }
3215 
3216                 // Calculate linear combination of former k's and save it in y
3217                 for (l = 0; l < j; l++) {
3218                     for (e = 0; e < dim; e++) {
3219                         y[e] += butcher.A[j][l] * h * k[l][e];
3220                     }
3221                 }
3222 
3223                 // Add x(t) to y
3224                 for (e = 0; e < dim; e++) {
3225                     y[e] += x[e];
3226                 }
3227 
3228                 // Calculate new k and add it to the k matrix
3229                 k.push(f(t + butcher.c[j] * h, y));
3230             }
3231 
3232             // Init y = 0
3233             for (e = 0; e < dim; e++) {
3234                 y[e] = 0.0;
3235             }
3236 
3237             for (l = 0; l < s; l++) {
3238                 for (e = 0; e < dim; e++) {
3239                     y[e] += butcher.b[l] * k[l][e];
3240                 }
3241             }
3242 
3243             for (e = 0; e < dim; e++) {
3244                 x[e] = x[e] + h * y[e];
3245             }
3246 
3247             t += h;
3248         }
3249 
3250         return result;
3251     },
3252 
3253     /**
3254      * Maximum number of iterations in {@link JXG.Math.Numerics.fzero} and
3255      * {@link JXG.Math.Numerics.chandrupatla}
3256      * @type Number
3257      * @default 80
3258      * @memberof JXG.Math.Numerics
3259      */
3260     maxIterationsRoot: 80,
3261 
3262     /**
3263      * Maximum number of iterations in {@link JXG.Math.Numerics.fminbr}
3264      * @type Number
3265      * @default 500
3266      * @memberof JXG.Math.Numerics
3267      */
3268     maxIterationsMinimize: 500,
3269 
3270     /**
3271      * Given a value x_0, this function tries to find a second value x_1 such that
3272      * the function f has opposite signs at x_0 and x_1.
3273      * The return values have to be tested if the method succeeded.
3274      *
3275      * @param {Function} f Function, whose root is to be found
3276      * @param {Number} x0 Start value
3277      * @param {Object} object Parent object in case f is method of it
3278      * @returns {Array} [x_0, f(x_0), x_1, f(x_1)] in case that x_0 <= x_1
3279      *   or [x_1, f(x_1), x_0, f(x_0)] in case that x_1 < x_0.
3280      *
3281      * @see JXG.Math.Numerics.fzero
3282      * @see JXG.Math.Numerics.chandrupatla
3283      *
3284      * @memberof JXG.Math.Numerics
3285      */
3286     findBracket: function (f, x0, object) {
3287         var a, aa, fa, blist, b, fb, u, fu, i, len;
3288 
3289         if (Type.isArray(x0)) {
3290             return x0;
3291         }
3292 
3293         a = x0;
3294         fa = f.call(object, a);
3295         // nfev += 1;
3296 
3297         // Try to get b, by trying several values related to a
3298         aa = a === 0 ? 1 : a;
3299         blist = [
3300             a - 0.1 * aa,
3301             a + 0.1 * aa,
3302             a - 1,
3303             a + 1,
3304             a - 0.5 * aa,
3305             a + 0.5 * aa,
3306             a - 0.6 * aa,
3307             a + 0.6 * aa,
3308             a - 1 * aa,
3309             a + 1 * aa,
3310             a - 2 * aa,
3311             a + 2 * aa,
3312             a - 5 * aa,
3313             a + 5 * aa,
3314             a - 10 * aa,
3315             a + 10 * aa,
3316             a - 50 * aa,
3317             a + 50 * aa,
3318             a - 100 * aa,
3319             a + 100 * aa
3320         ];
3321         len = blist.length;
3322 
3323         for (i = 0; i < len; i++) {
3324             b = blist[i];
3325             fb = f.call(object, b);
3326             // nfev += 1;
3327 
3328             if (fa * fb <= 0) {
3329                 break;
3330             }
3331         }
3332         if (b < a) {
3333             u = a;
3334             a = b;
3335             b = u;
3336 
3337             fu = fa;
3338             fa = fb;
3339             fb = fu;
3340         }
3341         return [a, fa, b, fb];
3342     },
3343 
3344     /**
3345      *
3346      * Find zero of an univariate function f.
3347      * @param {function} f Function, whose root is to be found
3348      * @param {Array|Number} x0  Start value or start interval enclosing the root
3349      * @param {Object} object Parent object in case f is method of it
3350      * @returns {Number} the approximation of the root
3351      * Algorithm:
3352      *  Brent's root finder from
3353      *  G.Forsythe, M.Malcolm, C.Moler, Computer methods for mathematical
3354      *  computations. M., Mir, 1980, p.180 of the Russian edition
3355      *  https://www.netlib.org/c/brent.shar
3356      *
3357      * If x0 is an array containing lower and upper bound for the zero
3358      * algorithm 748 is applied. Otherwise, if x0 is a number,
3359      * the algorithm tries to bracket a zero of f starting from x0.
3360      * If this fails, we fall back to Newton's method.
3361      *
3362      * @see JXG.Math.Numerics.chandrupatla
3363      * @see JXG.Math.Numerics.root
3364      * @memberof JXG.Math.Numerics
3365      */
3366     fzero: function (f, x0, object) {
3367         var a, b, c,
3368             fa, fb, fc,
3369             res,
3370             prev_step,
3371             t1, t2,
3372             cb,
3373             tol_act,   // Actual tolerance
3374             p,         // Interpolation step is calculated in the form p/q; division
3375             q,         // operations is delayed until the last moment
3376             new_step,  // Step at this iteration
3377             eps = Mat.eps,
3378             maxiter = this.maxIterationsRoot,
3379             niter = 0;
3380         // nfev = 0;
3381 
3382         if (Type.isArray(x0)) {
3383             if (x0.length < 2) {
3384                 throw new Error(
3385                     "JXG.Math.Numerics.fzero: length of array x0 has to be at least two."
3386                 );
3387             }
3388 
3389             a = x0[0];
3390             fa = f.call(object, a);
3391             // nfev += 1;
3392             b = x0[1];
3393             fb = f.call(object, b);
3394             // nfev += 1;
3395         } else {
3396             res = this.findBracket(f, x0, object);
3397             a = res[0];
3398             fa = res[1];
3399             b = res[2];
3400             fb = res[3];
3401         }
3402 
3403         if (Math.abs(fa) <= eps) {
3404             return a;
3405         }
3406         if (Math.abs(fb) <= eps) {
3407             return b;
3408         }
3409 
3410         if (fa * fb > 0) {
3411             // Bracketing not successful, fall back to Newton's method or to fminbr
3412             if (Type.isArray(x0)) {
3413                 return this.fminbr(f, [a, b], object);
3414             }
3415 
3416             return this.Newton(f, a, object);
3417         }
3418 
3419         // OK, we have enclosed a zero of f.
3420         // Now we can start Brent's method
3421         c = a;
3422         fc = fa;
3423 
3424         // Main iteration loop
3425         while (niter < maxiter) {
3426             // Distance from the last but one to the last approximation
3427             prev_step = b - a;
3428 
3429             // Swap data for b to be the best approximation
3430             if (Math.abs(fc) < Math.abs(fb)) {
3431                 a = b;
3432                 b = c;
3433                 c = a;
3434 
3435                 fa = fb;
3436                 fb = fc;
3437                 fc = fa;
3438             }
3439             tol_act = 2 * eps * Math.abs(b) + eps * 0.5;
3440             new_step = (c - b) * 0.5;
3441 
3442             if (Math.abs(new_step) <= tol_act || Math.abs(fb) <= eps) {
3443                 //  Acceptable approx. is found
3444                 return b;
3445             }
3446 
3447             // Decide if the interpolation can be tried
3448             // If prev_step was large enough and was in true direction Interpolatiom may be tried
3449             if (Math.abs(prev_step) >= tol_act && Math.abs(fa) > Math.abs(fb)) {
3450                 cb = c - b;
3451 
3452                 // If we have only two distinct points linear interpolation can only be applied
3453                 if (a === c) {
3454                     t1 = fb / fa;
3455                     p = cb * t1;
3456                     q = 1.0 - t1;
3457                     // Quadric inverse interpolation
3458                 } else {
3459                     q = fa / fc;
3460                     t1 = fb / fc;
3461                     t2 = fb / fa;
3462 
3463                     p = t2 * (cb * q * (q - t1) - (b - a) * (t1 - 1.0));
3464                     q = (q - 1.0) * (t1 - 1.0) * (t2 - 1.0);
3465                 }
3466 
3467                 // p was calculated with the opposite sign; make p positive
3468                 if (p > 0) {
3469                     q = -q;
3470                     // and assign possible minus to q
3471                 } else {
3472                     p = -p;
3473                 }
3474 
3475                 // If b+p/q falls in [b,c] and isn't too large it is accepted
3476                 // If p/q is too large then the bissection procedure can reduce [b,c] range to more extent
3477                 if (
3478                     p < 0.75 * cb * q - Math.abs(tol_act * q) * 0.5 &&
3479                     p < Math.abs(prev_step * q * 0.5)
3480                 ) {
3481                     new_step = p / q;
3482                 }
3483             }
3484 
3485             // Adjust the step to be not less than tolerance
3486             if (Math.abs(new_step) < tol_act) {
3487                 new_step = new_step > 0 ? tol_act : -tol_act;
3488             }
3489 
3490             // Save the previous approx.
3491             a = b;
3492             fa = fb;
3493             b += new_step;
3494             fb = f.call(object, b);
3495             // Do step to a new approxim.
3496             // nfev += 1;
3497 
3498             // Adjust c for it to have a sign opposite to that of b
3499             if ((fb > 0 && fc > 0) || (fb < 0 && fc < 0)) {
3500                 c = a;
3501                 fc = fa;
3502             }
3503             niter++;
3504         } // End while
3505 
3506         return b;
3507     },
3508 
3509     /**
3510      * Find zero of an univariate function f.
3511      * @param {function} f Function, whose root is to be found
3512      * @param {Array|Number} x0  Start value or start interval enclosing the root
3513      * @param {Object} object Parent object in case f is method of it
3514      * @returns {Number} the approximation of the root
3515      * Algorithm:
3516      * Chandrupatla's method, see
3517      * Tirupathi R. Chandrupatla,
3518      * "A new hybrid quadratic/bisection algorithm for finding the zero of a nonlinear function without using derivatives",
3519      * Advances in Engineering Software, Volume 28, Issue 3, April 1997, Pages 145-149.
3520      *
3521      * If x0 is an array containing lower and upper bound for the zero
3522      * algorithm 748 is applied. Otherwise, if x0 is a number,
3523      * the algorithm tries to bracket a zero of f starting from x0.
3524      * If this fails, we fall back to Newton's method.
3525      *
3526      * @see JXG.Math.Numerics.root
3527      * @see JXG.Math.Numerics.fzero
3528      * @memberof JXG.Math.Numerics
3529      */
3530     chandrupatla: function (f, x0, object) {
3531         var a, b, fa, fb,
3532             res,
3533             niter = 0,
3534             maxiter = this.maxIterationsRoot,
3535             rand = 1 + Math.random() * 0.001,
3536             t = 0.5 * rand,
3537             eps = Mat.eps, // 1.e-10,
3538             dlt = 0.00001,
3539             x1, x2, x3, x,
3540             f1, f2, f3, y,
3541             xm,
3542             fm,
3543             tol,
3544             tl,
3545             xi,
3546             ph,
3547             fl,
3548             fh,
3549             AL, A, B, C, D;
3550 
3551         if (Type.isArray(x0)) {
3552             if (x0.length < 2) {
3553                 throw new Error(
3554                     "JXG.Math.Numerics.fzero: length of array x0 has to be at least two."
3555                 );
3556             }
3557 
3558             a = x0[0];
3559             fa = f.call(object, a);
3560             // nfev += 1;
3561             b = x0[1];
3562             fb = f.call(object, b);
3563             // nfev += 1;
3564         } else {
3565             res = this.findBracket(f, x0, object);
3566             a = res[0];
3567             fa = res[1];
3568             b = res[2];
3569             fb = res[3];
3570         }
3571 
3572         if (fa * fb > 0) {
3573             // Bracketing not successful, fall back to Newton's method or to fminbr
3574             if (Type.isArray(x0)) {
3575                 return this.fminbr(f, [a, b], object);
3576             }
3577 
3578             return this.Newton(f, a, object);
3579         }
3580 
3581         x1 = a;
3582         x2 = b;
3583         f1 = fa;
3584         f2 = fb;
3585         do {
3586             x = x1 + t * (x2 - x1);
3587             y = f.call(object, x);
3588 
3589             // Arrange 2-1-3: 2-1 interval, 1 middle, 3 discarded point
3590             if (Math.sign(y) === Math.sign(f1)) {
3591                 x3 = x1;
3592                 x1 = x;
3593                 f3 = f1;
3594                 f1 = y;
3595             } else {
3596                 x3 = x2;
3597                 x2 = x1;
3598                 f3 = f2;
3599                 f2 = f1;
3600             }
3601             x1 = x;
3602             f1 = y;
3603 
3604             xm = x1;
3605             fm = f1;
3606             if (Math.abs(f2) < Math.abs(f1)) {
3607                 xm = x2;
3608                 fm = f2;
3609             }
3610             tol = 2 * eps * Math.abs(xm) + 0.5 * dlt;
3611             tl = tol / Math.abs(x2 - x1);
3612             if (tl > 0.5 || fm === 0) {
3613                 break;
3614             }
3615             // If inverse quadratic interpolation holds, use it
3616             xi = (x1 - x2) / (x3 - x2);
3617             ph = (f1 - f2) / (f3 - f2);
3618             fl = 1 - Math.sqrt(1 - xi);
3619             fh = Math.sqrt(xi);
3620             if (fl < ph && ph < fh) {
3621                 AL = (x3 - x1) / (x2 - x1);
3622                 A = f1 / (f2 - f1);
3623                 B = f3 / (f2 - f3);
3624                 C = f1 / (f3 - f1);
3625                 D = f2 / (f3 - f2);
3626                 t = A * B + C * D * AL;
3627             } else {
3628                 t = 0.5 * rand;
3629             }
3630             // Adjust t away from the interval boundary
3631             if (t < tl) {
3632                 t = tl;
3633             }
3634             if (t > 1 - tl) {
3635                 t = 1 - tl;
3636             }
3637             niter++;
3638         } while (niter <= maxiter);
3639         // console.log(niter);
3640 
3641         return xm;
3642     },
3643 
3644     /**
3645      *
3646      * Find minimum of an univariate function f.
3647      * <p>
3648      * Algorithm:
3649      *  G.Forsythe, M.Malcolm, C.Moler, Computer methods for mathematical
3650      *  computations. M., Mir, 1980, p.180 of the Russian edition
3651      *
3652      * @param {function} f Function, whose minimum is to be found
3653      * @param {Array} x0  Start interval enclosing the minimum
3654      * @param {Object} context Parent object in case f is method of it
3655      * @returns {Number} the approximation of the minimum value position
3656      * @memberof JXG.Math.Numerics
3657      **/
3658     fminbr: function (f, x0, context) {
3659         var a, b, x, v, w,
3660             fx, fv, fw,
3661             range, middle_range, tol_act, new_step,
3662             p, q, t, ft,
3663             r = (3.0 - Math.sqrt(5.0)) * 0.5,      // Golden section ratio
3664             tol = Mat.eps,
3665             sqrteps = Mat.eps, // Math.sqrt(Mat.eps),
3666             maxiter = this.maxIterationsMinimize,
3667             niter = 0;
3668         // nfev = 0;
3669 
3670         if (!Type.isArray(x0) || x0.length < 2) {
3671             throw new Error(
3672                 "JXG.Math.Numerics.fminbr: length of array x0 has to be at least two."
3673             );
3674         }
3675 
3676         a = x0[0];
3677         b = x0[1];
3678         v = a + r * (b - a);
3679         fv = f.call(context, v);
3680 
3681         // First step - always gold section
3682         // nfev += 1;
3683         x = v;
3684         w = v;
3685         fx = fv;
3686         fw = fv;
3687 
3688         while (niter < maxiter) {
3689             // Range over the interval in which we are looking for the minimum
3690             range = b - a;
3691             middle_range = (a + b) * 0.5;
3692 
3693             // Actual tolerance
3694             tol_act = sqrteps * Math.abs(x) + tol / 3.0;
3695 
3696             if (Math.abs(x - middle_range) + range * 0.5 <= 2.0 * tol_act) {
3697                 // Acceptable approx. is found
3698                 return x;
3699             }
3700 
3701             // Obtain the golden section step
3702             new_step = r * (x < middle_range ? b - x : a - x);
3703 
3704             // Decide if the interpolation can be tried. If x and w are distinct, interpolatiom may be tried
3705             if (Math.abs(x - w) >= tol_act) {
3706                 // Interpolation step is calculated as p/q;
3707                 // division operation is delayed until last moment
3708                 t = (x - w) * (fx - fv);
3709                 q = (x - v) * (fx - fw);
3710                 p = (x - v) * q - (x - w) * t;
3711                 q = 2 * (q - t);
3712 
3713                 if (q > 0) {
3714                     p = -p; // q was calculated with the opposite sign; make q positive
3715                 } else {
3716                     q = -q; // // and assign possible minus to p
3717                 }
3718                 if (
3719                     Math.abs(p) < Math.abs(new_step * q) && // If x+p/q falls in [a,b]
3720                     p > q * (a - x + 2 * tol_act) &&        //  not too close to a and
3721                     p < q * (b - x - 2 * tol_act)
3722                 ) {
3723                     // b, and isn't too large
3724                     new_step = p / q; // it is accepted
3725                 }
3726                 // If p / q is too large then the
3727                 // golden section procedure can
3728                 // reduce [a,b] range to more
3729                 // extent
3730             }
3731 
3732             // Adjust the step to be not less than tolerance
3733             if (Math.abs(new_step) < tol_act) {
3734                 if (new_step > 0) {
3735                     new_step = tol_act;
3736                 } else {
3737                     new_step = -tol_act;
3738                 }
3739             }
3740 
3741             // Obtain the next approximation to min
3742             // and reduce the enveloping range
3743 
3744             // Tentative point for the min
3745             t = x + new_step;
3746             ft = f.call(context, t);
3747             // nfev += 1;
3748 
3749             // t is a better approximation
3750             if (ft <= fx) {
3751                 // Reduce the range so that t would fall within it
3752                 if (t < x) {
3753                     b = x;
3754                 } else {
3755                     a = x;
3756                 }
3757 
3758                 // Assign the best approx to x
3759                 v = w;
3760                 w = x;
3761                 x = t;
3762 
3763                 fv = fw;
3764                 fw = fx;
3765                 fx = ft;
3766                 // x remains the better approx
3767             } else {
3768                 // Reduce the range enclosing x
3769                 if (t < x) {
3770                     a = t;
3771                 } else {
3772                     b = t;
3773                 }
3774 
3775                 if (ft <= fw || w === x) {
3776                     v = w;
3777                     w = t;
3778                     fv = fw;
3779                     fw = ft;
3780                 } else if (ft <= fv || v === x || v === w) {
3781                     v = t;
3782                     fv = ft;
3783                 }
3784             }
3785             niter += 1;
3786         }
3787 
3788         return x;
3789     },
3790 
3791     /**
3792      *
3793      *   Purpose:
3794      *
3795      *   GLOMIN seeks a global minimum of a function F(X) in an interval [A,B].
3796      *
3797      * Discussion:
3798      *
3799      *  This function assumes that F(X) is twice continuously differentiable over [A,B]
3800      * and that F''(X) <= M for all X in [A,B].
3801      *
3802      * Licensing:
3803      *   This code is distributed under the GNU LGPL license.
3804      *
3805      * Modified:
3806      *
3807      *   17 April 2008
3808      *
3809      * Author:
3810      *
3811      *   Original FORTRAN77 version by Richard Brent.
3812      *   C version by John Burkardt.
3813      *   https://people.math.sc.edu/Burkardt/c_src/brent/brent.c
3814      *
3815      * Reference:
3816      *
3817      *   Richard Brent,
3818      *  Algorithms for Minimization Without Derivatives,
3819      *   Dover, 2002,
3820      *  ISBN: 0-486-41998-3,
3821      *   LC: QA402.5.B74.
3822      *
3823      * Parameters:
3824      *
3825      *   Input, double A, B, the endpoints of the interval.
3826      *  It must be the case that A < B.
3827      *
3828      *   Input, double C, an initial guess for the global
3829      *  minimizer.  If no good guess is known, C = A or B is acceptable.
3830      *
3831      *  Input, double M, the bound on the second derivative.
3832      *
3833      *   Input, double MACHEP, an estimate for the relative machine
3834      *  precision.
3835      *
3836      *   Input, double E, a positive tolerance, a bound for the
3837      *  absolute error in the evaluation of F(X) for any X in [A,B].
3838      *
3839      *   Input, double T, a positive error tolerance.
3840      *
3841      *    Input, double F (double x ), a user-supplied
3842      *  function whose global minimum is being sought.
3843      *
3844      *   Output, double *X, the estimated value of the abscissa
3845      *  for which F attains its global minimum value in [A,B].
3846      *
3847      *   Output, double GLOMIN, the value F(X).
3848      */
3849     glomin: function (f, x0) {
3850         var a0, a2, a3, d0, d1, d2, h,
3851             k, m2,
3852             p, q, qs,
3853             r, s, sc,
3854             y, y0, y1, y2, y3, yb,
3855             z0, z1, z2,
3856             a, b, c, x,
3857             m = 10000000.0,
3858             t = Mat.eps, // * Mat.eps,
3859             e = Mat.eps * Mat.eps,
3860             machep = Mat.eps * Mat.eps * Mat.eps;
3861 
3862         a = x0[0];
3863         b = x0[1];
3864         c = (f(a) < f(b)) ? a : b;
3865 
3866         a0 = b;
3867         x = a0;
3868         a2 = a;
3869         y0 = f(b);
3870         yb = y0;
3871         y2 = f(a);
3872         y = y2;
3873 
3874         if (y0 < y) {
3875             y = y0;
3876         } else {
3877             x = a;
3878         }
3879 
3880         if (m <= 0.0 || b <= a) {
3881             return y;
3882         }
3883 
3884         m2 = 0.5 * (1.0 + 16.0 * machep) * m;
3885 
3886         if (c <= a || b <= c) {
3887             sc = 0.5 * (a + b);
3888         } else {
3889             sc = c;
3890         }
3891 
3892         y1 = f(sc);
3893         k = 3;
3894         d0 = a2 - sc;
3895         h = 9.0 / 11.0;
3896 
3897         if (y1 < y) {
3898             x = sc;
3899             y = y1;
3900         }
3901 
3902         for (; ;) {
3903             d1 = a2 - a0;
3904             d2 = sc - a0;
3905             z2 = b - a2;
3906             z0 = y2 - y1;
3907             z1 = y2 - y0;
3908             r = d1 * d1 * z0 - d0 * d0 * z1;
3909             p = r;
3910             qs = 2.0 * (d0 * z1 - d1 * z0);
3911             q = qs;
3912 
3913             if (k < 1000000 || y2 <= y) {
3914                 for (; ;) {
3915                     if (q * (r * (yb - y2) + z2 * q * ((y2 - y) + t)) <
3916                         z2 * m2 * r * (z2 * q - r)) {
3917 
3918                         a3 = a2 + r / q;
3919                         y3 = f(a3);
3920 
3921                         if (y3 < y) {
3922                             x = a3;
3923                             y = y3;
3924                         }
3925                     }
3926                     k = ((1611 * k) % 1048576);
3927                     q = 1.0;
3928                     r = (b - a) * 0.00001 * k;
3929 
3930                     if (z2 <= r) {
3931                         break;
3932                     }
3933                 }
3934             } else {
3935                 k = ((1611 * k) % 1048576);
3936                 q = 1.0;
3937                 r = (b - a) * 0.00001 * k;
3938 
3939                 while (r < z2) {
3940                     if (q * (r * (yb - y2) + z2 * q * ((y2 - y) + t)) <
3941                         z2 * m2 * r * (z2 * q - r)) {
3942 
3943                         a3 = a2 + r / q;
3944                         y3 = f(a3);
3945 
3946                         if (y3 < y) {
3947                             x = a3;
3948                             y = y3;
3949                         }
3950                     }
3951                     k = ((1611 * k) % 1048576);
3952                     q = 1.0;
3953                     r = (b - a) * 0.00001 * k;
3954                 }
3955             }
3956 
3957             r = m2 * d0 * d1 * d2;
3958             s = Math.sqrt(((y2 - y) + t) / m2);
3959             h = 0.5 * (1.0 + h);
3960             p = h * (p + 2.0 * r * s);
3961             q = q + 0.5 * qs;
3962             r = - 0.5 * (d0 + (z0 + 2.01 * e) / (d0 * m2));
3963 
3964             if (r < s || d0 < 0.0) {
3965                 r = a2 + s;
3966             } else {
3967                 r = a2 + r;
3968             }
3969 
3970             if (0.0 < p * q) {
3971                 a3 = a2 + p / q;
3972             } else {
3973                 a3 = r;
3974             }
3975 
3976             for (; ;) {
3977                 a3 = Math.max(a3, r);
3978 
3979                 if (b <= a3) {
3980                     a3 = b;
3981                     y3 = yb;
3982                 } else {
3983                     y3 = f(a3);
3984                 }
3985 
3986                 if (y3 < y) {
3987                     x = a3;
3988                     y = y3;
3989                 }
3990 
3991                 d0 = a3 - a2;
3992 
3993                 if (a3 <= r) {
3994                     break;
3995                 }
3996 
3997                 p = 2.0 * (y2 - y3) / (m * d0);
3998 
3999                 if ((1.0 + 9.0 * machep) * d0 <= Math.abs(p)) {
4000                     break;
4001                 }
4002 
4003                 if (0.5 * m2 * (d0 * d0 + p * p) <= (y2 - y) + (y3 - y) + 2.0 * t) {
4004                     break;
4005                 }
4006                 a3 = 0.5 * (a2 + a3);
4007                 h = 0.9 * h;
4008             }
4009 
4010             if (b <= a3) {
4011                 break;
4012             }
4013 
4014             a0 = sc;
4015             sc = a2;
4016             a2 = a3;
4017             y0 = y1;
4018             y1 = y2;
4019             y2 = y3;
4020         }
4021 
4022         return [x, y];
4023     },
4024 
4025     /**
4026      * Determine all roots of a polynomial with real or complex coefficients by using the
4027      * iterative method attributed to Weierstrass, Durand, Kerner, Aberth, and Ehrlich. In particular,
4028      * the iteration method with cubic convergence is used that is usually attributed to Ehrlich-Aberth.
4029      * <p>
4030      * The returned roots are sorted with respect to their real values.
4031      * <p> This method makes use of the JSXGraph classes {@link JXG.Complex} and {@link JXG.C} to handle
4032      * complex numbers.
4033      *
4034      * @param {Array} a Array of coefficients of the polynomial a[0] + a[1]*x+ a[2]*x**2...
4035      * The coefficients are of type Number or JXG.Complex.
4036      * @param {Number} [deg] Optional degree of the polynomial. Otherwise all entries are taken, with
4037      * leading zeros removed.
4038      * @param {Number} [tol=Number.EPSILON] Approximation tolerance
4039      * @param {Number} [max_it=30] Maximum number of iterations
4040      * @param {Array} [initial_values=null] Array of initial values for the roots. If not given,
4041      * starting values are determined by the method of Ozawa.
4042      * @returns {Array} Array of complex numbers (of JXG.Complex) approximating the roots of the polynomial.
4043      * @memberof JXG.Math.Numerics
4044      * @see JXG.Complex
4045      * @see JXG.C
4046      *
4047      * @example
4048      * // Polynomial p(z) = -1 + 1z^2
4049      * var i, roots,
4050      *     p = [-1, 0, 1];
4051      *
4052      * roots = JXG.Math.Numerics.polzeros(p);
4053      * for (i = 0; i < roots.length; i++) {
4054      *     console.log(i, roots[i].toString());
4055      * }
4056      * // Output:
4057      *   0 -1 + -3.308722450212111e-24i
4058      *   1 1 + 0i
4059      *
4060      * @example
4061      * // Polynomial p(z) = -1 + 3z - 9z^2 + z^3 - 8z^6 + 9z^7 - 9z^8 + z^9
4062      * var i, roots,
4063      *     p = [-1, 3, -9, 1, 0, 0, -8, 9, -9, 1];
4064      *
4065      * roots = JXG.Math.Numerics.polzeros(p);
4066      * for (i = 0; i < roots.length; i++) {
4067      *     console.log(i, roots[i].toString());
4068      * }
4069      * // Output:
4070      * 0 -0.7424155888401961 + 0.4950476539211721i
4071      * 1 -0.7424155888401961 + -0.4950476539211721i
4072      * 2 0.16674869833354108 + 0.2980502714610669i
4073      * 3 0.16674869833354108 + -0.29805027146106694i
4074      * 4 0.21429002063640837 + 1.0682775088132996i
4075      * 5 0.21429002063640842 + -1.0682775088132999i
4076      * 6 0.861375497926218 + -0.6259177003583295i
4077      * 7 0.8613754979262181 + 0.6259177003583295i
4078      * 8 8.000002743888055 + -1.8367099231598242e-40i
4079      *
4080      */
4081     polzeros: function (coeffs, deg, tol, max_it, initial_values) {
4082         var i, le, off, it,
4083             debug = false,
4084             cc = [],
4085             obvious = [],
4086             roots = [],
4087 
4088             /**
4089              * Horner method to evaluate polynomial or the derivative thereof for complex numbers,
4090              * i.e. coefficients and variable are complex.
4091              * @function
4092              * @param {Array} a Array of complex coefficients of the polynomial a[0] + a[1]*x+ a[2]*x**2...
4093              * @param {JXG.Complex} z Value for which the polynomial will be evaluated.
4094              * @param {Boolean} [derivative=false] If true the derivative will be evaluated.
4095              * @ignore
4096              */
4097             hornerComplex = function (a, z, derivative) {
4098                 var i, s,
4099                     n = a.length - 1;
4100 
4101                 derivative = derivative || false;
4102                 if (derivative) {
4103                     // s = n * a_n
4104                     s = JXG.C.mult(n, a[n]);
4105                     for (i = n - 1; i > 0; i--) {
4106                         // s = s * z + i * a_i
4107                         s.mult(z);
4108                         s.add(JXG.C.mult(a[i], i));
4109                     }
4110                 } else {
4111                     // s = a_n
4112                     s = JXG.C.copy(a[n]);
4113                     for (i = n - 1; i >= 0; i--) {
4114                         // s = s * z + a_i
4115                         s.mult(z);
4116                         s.add(a[i]);
4117                     }
4118                 }
4119                 return s;
4120             },
4121 
4122             /**
4123              * Horner method to evaluate reciprocal polynomial or the derivative thereof for complex numbers,
4124              * i.e. coefficients and variable are complex.
4125              * @function
4126              * @param {Array} a Array of complex coefficients of the polynomial a[0] + a[1]*x+ a[2]*x**2...
4127              * @param {JXG.Complex} z Value for which the reciprocal polynomial will be evaluated.
4128              * @param {Boolean} [derivative=false] If true the derivative will be evaluated.
4129              * @ignore
4130              */
4131             hornerRec = function (a, x, derivative) {
4132                 var i, s,
4133                     n = a.length - 1;
4134 
4135                 derivative = derivative || false;
4136                 if (derivative) {
4137                     // s = n * a_0
4138                     s = JXG.C.mult(n, a[0]);
4139                     for (i = n - 1; i > 0; i--) {
4140                         // s = s * x + i * a_{n-i}
4141                         s.mult(x);
4142                         s.add(JXG.C.mult(a[n - i], i));
4143                     }
4144                 } else {
4145                     // s = a_0
4146                     s = JXG.C.copy(a[0]);
4147                     for (i = n - 1; i >= 0; i--) {
4148                         // s = s * x + a_{n-i}
4149                         s.mult(x);
4150                         s.add(a[n - i]);
4151                     }
4152                 }
4153                 return s;
4154             },
4155 
4156             /**
4157              * Horner method to evaluate real polynomial at a real value.
4158              * @function
4159              * @param {Array} a Array of real coefficients of the polynomial a[0] + a[1]*x+ a[2]*x**2...
4160              * @param {Number} z Value for which the polynomial will be evaluated.
4161              * @ignore
4162              */
4163             horner = function (a, x) {
4164                 var i, s,
4165                     n = a.length - 1;
4166 
4167                 s = a[n];
4168                 for (i = n - 1; i >= 0; i--) {
4169                     s = s * x + a[i];
4170                 }
4171                 return s;
4172             },
4173 
4174             /**
4175              * Determine start values for the Aberth iteration, see
4176              * Ozawa, "An experimental study of the starting values
4177              * of the Durand-Kerner-Aberth iteration" (1995).
4178              *
4179              * @function
4180              * @param {Array} a Array of complex coefficients of the polynomial a[0] + a[1]*x+ a[2]*x**2...
4181              * @returns {Array} Array Initial values for the roots.
4182              * @ignore
4183              */
4184             initial_guess = function (a) {
4185                 var i, r,
4186                     n = a.length - 1, // degree
4187                     alpha1 = Math.PI * 2 / n,
4188                     alpha0 = Math.PI / n * 0.5,
4189                     b, z,
4190                     init = [];
4191 
4192 
4193                 // From Ozawa, "An experimental study of the starting values
4194                 // of the Durand-Kerner-Aberth iteration" (1995)
4195 
4196                 // b is the arithmetic mean of the roots.
4197                 // With is Vieta's formula <https://en.wikipedia.org/wiki/Vieta%27s_formulas>
4198                 //   b = -a_{n-1} / (n * a_n)
4199                 b = JXG.C.mult(-1, a[n - 1]);
4200                 b.div(JXG.C.mult(n, a[n]));
4201 
4202                 // r is the geometric mean of the deviations |b - root_i|.
4203                 // Using
4204                 //   p(z) = a_n prod(z - root_i)
4205                 // and therefore
4206                 //   |p(b)| = |a_n| prod(|b - root_i|)
4207                 // we arrive at:
4208                 //   r = |p(b)/a_n|^(1/n)
4209                 z = JXG.C.div(hornerComplex(a, b), a[n]);
4210                 r = Math.pow(JXG.C.abs(z), 1 / n);
4211                 if (r === 0) { r = 1; }
4212 
4213                 for (i = 0; i < n; i++) {
4214                     a = new JXG.Complex(r * Math.cos(alpha1 * i + alpha0), r * Math.sin(alpha1 * i + alpha0));
4215                     init[i] = JXG.C.add(b, a);
4216                 }
4217 
4218                 return init;
4219             },
4220 
4221             /**
4222              * Ehrlich-Aberth iteration. The stopping criterion is from
4223              * D.A. Bini, "Numerical computation of polynomial zeros
4224              * by means of Aberths's method", Numerical Algorithms (1996).
4225              *
4226              * @function
4227              * @param {Array} a Array of complex coefficients of the polynomial a[0] + a[1]*x+ a[2]*x**2...
4228              * @param {Number} mu Machine precision
4229              * @param {Number} max_it Maximum number of iterations
4230              * @param {Array} z Initial guess for the roots. Will be changed in place.
4231              * @returns {Number} Number of iterations
4232              * @ignore
4233              */
4234             aberthIteration = function (cc, mu, max_it, z) {
4235                 var k, i, j,
4236                     done = [],
4237                     cr = [],
4238                     gamma, x,
4239                     done_sum = 0,
4240                     num, denom, s, pp,
4241                     n = z.length;
4242 
4243                 for (i = 0; i < n; i++) {
4244                     done.push(false);
4245                 }
4246                 for (i = 0; i < cc.length; i++) {
4247                     cr.push(JXG.C.abs(cc[i]) * (4 * i + 1));
4248                 }
4249                 for (k = 0; k < max_it && done_sum < n; k++) {
4250                     for (i = 0; i < n; i++) {
4251                         if (done[i]) {
4252                             continue;
4253                         }
4254                         num = hornerComplex(cc, z[i]);
4255                         x = JXG.C.abs(z[i]);
4256 
4257                         // Stopping criterion by D.A. Bini
4258                         // "Numerical computation of polynomial zeros
4259                         // by means of Aberths's method", Numerical Algorithms (1996).
4260                         //
4261                         if (JXG.C.abs(num) < mu * horner(cr, x)) {
4262                             done[i] = true;
4263                             done_sum++;
4264                             if (done_sum === n) {
4265                                 break;
4266                             }
4267                             continue;
4268                         }
4269 
4270                         // num = P(z_i) / P'(z_i)
4271                         if (x > 1) {
4272                             gamma = JXG.C.div(1, z[i]);
4273                             pp = hornerRec(cc, gamma, true);
4274                             pp.div(hornerRec(cc, gamma));
4275                             pp.mult(gamma);
4276                             num = JXG.C.sub(n, pp);
4277                             num = JXG.C.div(z[i], num);
4278                         } else {
4279                             num.div(hornerComplex(cc, z[i], true));
4280                         }
4281 
4282                         // denom = sum_{i\neq j} 1 / (z_i  - z_j)
4283                         denom = new JXG.Complex(0);
4284                         for (j = 0; j < n; j++) {
4285                             if (j === i) {
4286                                 continue;
4287                             }
4288                             s = JXG.C.sub(z[i], z[j]);
4289                             s = JXG.C.div(1, s);
4290                             denom.add(s);
4291                         }
4292 
4293                         // num = num / 1 - num * sum_{i\neq j} 1 / (z_i - z_j)
4294                         denom.mult(num);
4295                         denom = JXG.C.sub(1, denom);
4296                         num.div(denom);
4297                         // z_i = z_i - num
4298                         z[i].sub(num);
4299                     }
4300                 }
4301 
4302                 return k;
4303             };
4304 
4305 
4306         tol = tol || Number.EPSILON;
4307         max_it = max_it || 30;
4308 
4309         le = coeffs.length;
4310         if (JXG.isNumber(deg) && deg >= 0 && deg < le - 1) {
4311             le = deg + 1;
4312         }
4313 
4314         // Convert coefficient array to complex numbers
4315         for (i = 0; i < le; i++) {
4316             cc.push(new JXG.Complex(coeffs[i]));
4317         }
4318 
4319         // Search for (multiple) roots at x=0
4320         for (i = 0; i < le; i++) {
4321             if (cc[i].real !== 0 || cc[i].imaginary !== 0) {
4322                 off = i;
4323                 break;
4324             }
4325         }
4326 
4327         // Deflate root x=0, store roots at x=0 in obvious
4328         for (i = 0; i < off; i++) {
4329             obvious.push(new JXG.Complex(0));
4330         }
4331         cc = cc.slice(off);
4332         le = cc.length;
4333 
4334         // Remove leading zeros from the coefficient array
4335         for (i = le - 1; i >= 0; i--) {
4336             if (cc[i].real !== 0 || cc[i].imaginary !== 0) {
4337                 break;
4338             }
4339             cc.pop();
4340         }
4341         le = cc.length;
4342         if (le === 0) {
4343             return [];
4344         }
4345 
4346         // From now on we can assume that the
4347         // constant coefficient and the leading coefficient
4348         // are not zero.
4349         if (initial_values) {
4350             for (i = 0; i < le - 1; i++) {
4351                 roots.push(new JXG.Complex(initial_values[i]));
4352             }
4353         } else {
4354             roots = initial_guess(cc);
4355         }
4356         it = aberthIteration(cc, tol, max_it, roots);
4357 
4358         // Append the roots at x=0
4359         roots = obvious.concat(roots);
4360 
4361         if (debug) {
4362             console.log("Iterations:", it);
4363             console.log('Roots:');
4364             for (i = 0; i < roots.length; i++) {
4365                 console.log(i, roots[i].toString(), JXG.C.abs(hornerComplex(cc, roots[i])));
4366             }
4367         }
4368 
4369         // Sort roots according to their real part
4370         roots.sort(function (a, b) {
4371             if (a.real < b.real) {
4372                 return -1;
4373             }
4374             if (a.real > b.real) {
4375                 return 1;
4376             }
4377             return 0;
4378         });
4379 
4380         return roots;
4381     },
4382 
4383     /**
4384      * Implements the Ramer-Douglas-Peucker algorithm.
4385      * It discards points which are not necessary from the polygonal line defined by the point array
4386      * pts. The computation is done in screen coordinates.
4387      * Average runtime is O(nlog(n)), worst case runtime is O(n^2), where n is the number of points.
4388      * @param {Array} pts Array of {@link JXG.Coords}
4389      * @param {Number} eps If the absolute value of a given number <tt>x</tt> is smaller than <tt>eps</tt> it is considered to be equal <tt>0</tt>.
4390      * @returns {Array} An array containing points which represent an apparently identical curve as the points of pts do, but contains fewer points.
4391      * @memberof JXG.Math.Numerics
4392      */
4393     RamerDouglasPeucker: function (pts, eps) {
4394         var allPts = [],
4395             newPts = [],
4396             i, k, len,
4397             endless = true,
4398 
4399             /**
4400              * findSplit() is a subroutine of {@link JXG.Math.Numerics.RamerDouglasPeucker}.
4401              * It searches for the point between index i and j which
4402              * has the largest distance from the line between the points i and j.
4403              * @param {Array} pts Array of {@link JXG.Coords}
4404              * @param {Number} i Index of a point in pts
4405              * @param {Number} j Index of a point in pts
4406              * @ignore
4407              * @private
4408              */
4409             findSplit = function (pts, i, j) {
4410                 var d, k, ci, cj, ck,
4411                     x0, y0, x1, y1,
4412                     den, lbda,
4413                     eps = Mat.eps * Mat.eps,
4414                     huge = 10000,
4415                     dist = 0,
4416                     f = i;
4417 
4418                 if (j - i < 2) {
4419                     return [-1.0, 0];
4420                 }
4421 
4422                 ci = pts[i].scrCoords;
4423                 cj = pts[j].scrCoords;
4424 
4425                 if (isNaN(ci[1]) || isNaN(ci[2])) {
4426                     return [NaN, i];
4427                 }
4428                 if (isNaN(cj[1]) || isNaN(cj[2])) {
4429                     return [NaN, j];
4430                 }
4431 
4432                 for (k = i + 1; k < j; k++) {
4433                     ck = pts[k].scrCoords;
4434                     if (isNaN(ck[1]) || isNaN(ck[2])) {
4435                         return [NaN, k];
4436                     }
4437 
4438                     x0 = ck[1] - ci[1];
4439                     y0 = ck[2] - ci[2];
4440                     x1 = cj[1] - ci[1];
4441                     y1 = cj[2] - ci[2];
4442                     x0 = x0 === Infinity ? huge : x0;
4443                     y0 = y0 === Infinity ? huge : y0;
4444                     x1 = x1 === Infinity ? huge : x1;
4445                     y1 = y1 === Infinity ? huge : y1;
4446                     x0 = x0 === -Infinity ? -huge : x0;
4447                     y0 = y0 === -Infinity ? -huge : y0;
4448                     x1 = x1 === -Infinity ? -huge : x1;
4449                     y1 = y1 === -Infinity ? -huge : y1;
4450                     den = x1 * x1 + y1 * y1;
4451 
4452                     if (den > eps) {
4453                         lbda = (x0 * x1 + y0 * y1) / den;
4454 
4455                         if (lbda < 0.0) {
4456                             lbda = 0.0;
4457                         } else if (lbda > 1.0) {
4458                             lbda = 1.0;
4459                         }
4460 
4461                         x0 = x0 - lbda * x1;
4462                         y0 = y0 - lbda * y1;
4463                         d = x0 * x0 + y0 * y0;
4464                     } else {
4465                         lbda = 0.0;
4466                         d = x0 * x0 + y0 * y0;
4467                     }
4468 
4469                     if (d > dist) {
4470                         dist = d;
4471                         f = k;
4472                     }
4473                 }
4474                 return [Math.sqrt(dist), f];
4475             },
4476             /**
4477              * RDP() is a private subroutine of {@link JXG.Math.Numerics.RamerDouglasPeucker}.
4478              * It runs recursively through the point set and searches the
4479              * point which has the largest distance from the line between the first point and
4480              * the last point. If the distance from the line is greater than eps, this point is
4481              * included in our new point set otherwise it is discarded.
4482              * If it is taken, we recursively apply the subroutine to the point set before
4483              * and after the chosen point.
4484              * @param {Array} pts Array of {@link JXG.Coords}
4485              * @param {Number} i Index of an element of pts
4486              * @param {Number} j Index of an element of pts
4487              * @param {Number} eps If the absolute value of a given number <tt>x</tt> is smaller than <tt>eps</tt> it is considered to be equal <tt>0</tt>.
4488              * @param {Array} newPts Array of {@link JXG.Coords}
4489              * @ignore
4490              * @private
4491              */
4492             RDP = function (pts, i, j, eps, newPts) {
4493                 var result = findSplit(pts, i, j),
4494                     k = result[1];
4495 
4496                 if (isNaN(result[0])) {
4497                     RDP(pts, i, k - 1, eps, newPts);
4498                     newPts.push(pts[k]);
4499                     do {
4500                         ++k;
4501                     } while (k <= j && isNaN(pts[k].scrCoords[1] + pts[k].scrCoords[2]));
4502                     if (k <= j) {
4503                         newPts.push(pts[k]);
4504                     }
4505                     RDP(pts, k + 1, j, eps, newPts);
4506                 } else if (result[0] > eps) {
4507                     RDP(pts, i, k, eps, newPts);
4508                     RDP(pts, k, j, eps, newPts);
4509                 } else {
4510                     newPts.push(pts[j]);
4511                 }
4512             };
4513 
4514         len = pts.length;
4515 
4516         i = 0;
4517         while (endless) {
4518             // Search for the next point without NaN coordinates
4519             while (i < len && isNaN(pts[i].scrCoords[1] + pts[i].scrCoords[2])) {
4520                 i += 1;
4521             }
4522             // Search for the next position of a NaN point
4523             k = i + 1;
4524             while (k < len && !isNaN(pts[k].scrCoords[1] + pts[k].scrCoords[2])) {
4525                 k += 1;
4526             }
4527             k--;
4528 
4529             // Only proceed if something is left
4530             if (i < len && k > i) {
4531                 newPts = [];
4532                 newPts[0] = pts[i];
4533                 RDP(pts, i, k, eps, newPts);
4534                 allPts = allPts.concat(newPts);
4535             }
4536             if (i >= len) {
4537                 break;
4538             }
4539             // Push the NaN point
4540             if (k < len - 1) {
4541                 allPts.push(pts[k + 1]);
4542             }
4543             i = k + 1;
4544         }
4545 
4546         return allPts;
4547     },
4548 
4549     /**
4550      * Old name for the implementation of the Ramer-Douglas-Peucker algorithm.
4551      * @deprecated Use {@link JXG.Math.Numerics.RamerDouglasPeucker}
4552      * @memberof JXG.Math.Numerics
4553      */
4554     RamerDouglasPeuker: function (pts, eps) {
4555         JXG.deprecated("Numerics.RamerDouglasPeuker()", "Numerics.RamerDouglasPeucker()");
4556         return this.RamerDouglasPeucker(pts, eps);
4557     },
4558 
4559     /**
4560      * Implements the Visvalingam-Whyatt algorithm.
4561      * See M. Visvalingam, J. D. Whyatt:
4562      * "Line generalisation by repeated elimination of the smallest area", C.I.S.R.G Discussion paper 10, July 1992
4563      *
4564      * The algorithm discards points which are not necessary from the polygonal line defined by the point array
4565      * pts (consisting of type JXG.Coords).
4566      * @param {Array} pts Array of {@link JXG.Coords}
4567      * @param {Number} numPoints Number of remaining intermediate points. The first and the last point of the original points will
4568      *    be taken in any case.
4569      * @returns {Array} An array containing points which approximates the curve defined by pts.
4570      * @memberof JXG.Math.Numerics
4571      *
4572      * @example
4573      *     var i, p = [];
4574      *     for (i = 0; i < 5; ++i) {
4575      *         p.push(board.create('point', [Math.random() * 12 - 6, Math.random() * 12 - 6]));
4576      *     }
4577      *
4578      *     // Plot a cardinal spline curve
4579      *     var splineArr = JXG.Math.Numerics.CardinalSpline(p, 0.5);
4580      *     var cu1 = board.create('curve', splineArr, {strokeColor: 'green'});
4581      *
4582      *     var c = board.create('curve', [[0],[0]], {strokeWidth: 2, strokeColor: 'black'});
4583      *     c.updateDataArray = function() {
4584      *         var i, len, points;
4585      *
4586      *         // Reduce number of intermediate points with Visvakingam-Whyatt to 6
4587      *         points = JXG.Math.Numerics.Visvalingam(cu1.points, 6);
4588      *         // Plot the remaining points
4589      *         len = points.length;
4590      *         this.dataX = [];
4591      *         this.dataY = [];
4592      *         for (i = 0; i < len; i++) {
4593      *             this.dataX.push(points[i].usrCoords[1]);
4594      *             this.dataY.push(points[i].usrCoords[2]);
4595      *         }
4596      *     };
4597      *     board.update();
4598      *
4599      * </pre><div id="JXGce0cc55c-b592-11e6-8270-104a7d3be7eb" class="jxgbox" style="width: 300px; height: 300px;"></div>
4600      * <script type="text/javascript">
4601      *     (function() {
4602      *         var board = JXG.JSXGraph.initBoard('JXGce0cc55c-b592-11e6-8270-104a7d3be7eb',
4603      *             {boundingbox: [-8, 8, 8,-8], axis: true, showcopyright: false, shownavigation: false});
4604      *
4605      *         var i, p = [];
4606      *         for (i = 0; i < 5; ++i) {
4607      *             p.push(board.create('point', [Math.random() * 12 - 6, Math.random() * 12 - 6]));
4608      *         }
4609      *
4610      *         // Plot a cardinal spline curve
4611      *         var splineArr = JXG.Math.Numerics.CardinalSpline(p, 0.5);
4612      *         var cu1 = board.create('curve', splineArr, {strokeColor: 'green'});
4613      *
4614      *         var c = board.create('curve', [[0],[0]], {strokeWidth: 2, strokeColor: 'black'});
4615      *         c.updateDataArray = function() {
4616      *             var i, len, points;
4617      *
4618      *             // Reduce number of intermediate points with Visvakingam-Whyatt to 6
4619      *             points = JXG.Math.Numerics.Visvalingam(cu1.points, 6);
4620      *             // Plot the remaining points
4621      *             len = points.length;
4622      *             this.dataX = [];
4623      *             this.dataY = [];
4624      *             for (i = 0; i < len; i++) {
4625      *                 this.dataX.push(points[i].usrCoords[1]);
4626      *                 this.dataY.push(points[i].usrCoords[2]);
4627      *             }
4628      *         };
4629      *         board.update();
4630      *
4631      *     })();
4632      *
4633      * </script><pre>
4634      *
4635      */
4636     Visvalingam: function (pts, numPoints) {
4637         var i,
4638             len,
4639             vol,
4640             lastVol,
4641             linkedList = [],
4642             heap = [],
4643             points = [],
4644             lft,
4645             rt,
4646             lft2,
4647             rt2,
4648             obj;
4649 
4650         len = pts.length;
4651 
4652         // At least one intermediate point is needed
4653         if (len <= 2) {
4654             return pts;
4655         }
4656 
4657         // Fill the linked list
4658         // Add first point to the linked list
4659         linkedList[0] = {
4660             used: true,
4661             lft: null,
4662             node: null
4663         };
4664 
4665         // Add all intermediate points to the linked list,
4666         // whose triangle area is nonzero.
4667         lft = 0;
4668         for (i = 1; i < len - 1; i++) {
4669             vol = Math.abs(
4670                 JXG.Math.Numerics.det([
4671                     pts[i - 1].usrCoords,
4672                     pts[i].usrCoords,
4673                     pts[i + 1].usrCoords
4674                 ])
4675             );
4676             if (!isNaN(vol)) {
4677                 obj = {
4678                     v: vol,
4679                     idx: i
4680                 };
4681                 heap.push(obj);
4682                 linkedList[i] = {
4683                     used: true,
4684                     lft: lft,
4685                     node: obj
4686                 };
4687                 linkedList[lft].rt = i;
4688                 lft = i;
4689             }
4690         }
4691 
4692         // Add last point to the linked list
4693         linkedList[len - 1] = {
4694             used: true,
4695             rt: null,
4696             lft: lft,
4697             node: null
4698         };
4699         linkedList[lft].rt = len - 1;
4700 
4701         // Remove points until only numPoints intermediate points remain
4702         lastVol = -Infinity;
4703         while (heap.length > numPoints) {
4704             // Sort the heap with the updated volume values
4705             heap.sort(function (a, b) {
4706                 // descending sort
4707                 return b.v - a.v;
4708             });
4709 
4710             // Remove the point with the smallest triangle
4711             i = heap.pop().idx;
4712             linkedList[i].used = false;
4713             lastVol = linkedList[i].node.v;
4714 
4715             // Update the pointers of the linked list
4716             lft = linkedList[i].lft;
4717             rt = linkedList[i].rt;
4718             linkedList[lft].rt = rt;
4719             linkedList[rt].lft = lft;
4720 
4721             // Update the values for the volumes in the linked list
4722             lft2 = linkedList[lft].lft;
4723             if (lft2 !== null) {
4724                 vol = Math.abs(
4725                     JXG.Math.Numerics.det([
4726                         pts[lft2].usrCoords,
4727                         pts[lft].usrCoords,
4728                         pts[rt].usrCoords
4729                     ])
4730                 );
4731 
4732                 linkedList[lft].node.v = vol >= lastVol ? vol : lastVol;
4733             }
4734             rt2 = linkedList[rt].rt;
4735             if (rt2 !== null) {
4736                 vol = Math.abs(
4737                     JXG.Math.Numerics.det([
4738                         pts[lft].usrCoords,
4739                         pts[rt].usrCoords,
4740                         pts[rt2].usrCoords
4741                     ])
4742                 );
4743 
4744                 linkedList[rt].node.v = vol >= lastVol ? vol : lastVol;
4745             }
4746         }
4747 
4748         // Return an array with the remaining points
4749         i = 0;
4750         points = [pts[i]];
4751         do {
4752             i = linkedList[i].rt;
4753             points.push(pts[i]);
4754         } while (linkedList[i].rt !== null);
4755 
4756         return points;
4757     }
4758 };
4759 
4760 export default Mat.Numerics;
4761