1 /*
  2     Copyright 2008-2025
  3         Matthias Ehmann,
  4         Michael Gerhaeuser,
  5         Carsten Miller,
  6         Bianca Valentin,
  7         Alfred Wassermann,
  8         Peter Wilfahrt
  9 
 10     This file is part of JSXGraph.
 11 
 12     JSXGraph is free software dual licensed under the GNU LGPL or MIT License.
 13 
 14     You can redistribute it and/or modify it under the terms of the
 15 
 16       * GNU Lesser General Public License as published by
 17         the Free Software Foundation, either version 3 of the License, or
 18         (at your option) any later version
 19       OR
 20       * MIT License: https://github.com/jsxgraph/jsxgraph/blob/master/LICENSE.MIT
 21 
 22     JSXGraph is distributed in the hope that it will be useful,
 23     but WITHOUT ANY WARRANTY; without even the implied warranty of
 24     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 25     GNU Lesser General Public License for more details.
 26 
 27     You should have received a copy of the GNU Lesser General Public License and
 28     the MIT License along with JSXGraph. If not, see <https://www.gnu.org/licenses/>
 29     and <https://opensource.org/licenses/MIT/>.
 30  */
 31 
 32 /*global JXG: true, define: true, Float32Array: true */
 33 /*jslint nomen: true, plusplus: true, bitwise: true*/
 34 
 35 /**
 36  * @fileoverview In this file the namespace JXG.Math is defined, which is the base namespace
 37  * for namespaces like JXG.Math.Numerics, JXG.Math.Plot, JXG.Math.Statistics, JXG.Math.Clip etc.
 38  */
 39 import JXG from "../jxg.js";
 40 import Type from "../utils/type.js";
 41 
 42 var undef,
 43     /*
 44      * Dynamic programming approach for recursive functions.
 45      * From "Speed up your JavaScript, Part 3" by Nicholas C. Zakas.
 46      * @see JXG.Math.factorial
 47      * @see JXG.Math.binomial
 48      * http://blog.thejit.org/2008/09/05/memoization-in-javascript/
 49      *
 50      * This method is hidden, because it is only used in JXG.Math. If someone wants
 51      * to use it in JSXGraph outside of JXG.Math, it should be moved to jsxgraph.js
 52      */
 53     memoizer = function (f) {
 54         var cache, join;
 55 
 56         if (f.memo) {
 57             return f.memo;
 58         }
 59 
 60         cache = {};
 61         join = Array.prototype.join;
 62 
 63         f.memo = function () {
 64             var key = join.call(arguments);
 65 
 66             // Seems to be a bit faster than "if (a in b)"
 67             return cache[key] !== undef ? cache[key] : (cache[key] = f.apply(this, arguments));
 68         };
 69 
 70         return f.memo;
 71     };
 72 
 73 /**
 74  * Math namespace. Contains mathematics related methods which are
 75  * specific to JSXGraph or which extend the JavaScript Math class.
 76  * @namespace
 77  */
 78 JXG.Math = {
 79     /**
 80      * eps defines the closeness to zero. If the absolute value of a given number is smaller
 81      * than eps, it is considered to be equal to zero.
 82      * @type Number
 83      */
 84     eps: 0.000001,
 85 
 86     /**
 87      * Determine the relative difference between two numbers.
 88      * @param  {Number} a First number
 89      * @param  {Number} b Second number
 90      * @returns {Number}  Relative difference between a and b: |a-b| / max(|a|, |b|)
 91      */
 92     relDif: function (a, b) {
 93         var c = Math.abs(a),
 94             d = Math.abs(b);
 95 
 96         d = Math.max(c, d);
 97 
 98         return d === 0.0 ? 0.0 : Math.abs(a - b) / d;
 99     },
100 
101     /**
102      * The JavaScript implementation of the % operator returns the symmetric modulo.
103      * mod and "%" are both identical if a >= 0 and m >= 0 but the results differ if a or m < 0.
104      * @param {Number} a
105      * @param {Number} m
106      * @returns {Number} Mathematical modulo <tt>a mod m</tt>
107      */
108     mod: function (a, m) {
109         return a - Math.floor(a / m) * m;
110     },
111 
112     /**
113      * Translate <code>x</code> into the interval <code>[a, b)</code> by adding
114      * a multiple of <code>b - a</code>.
115      * @param {Number} x
116      * @param {Number} a
117      * @param {Number} b
118      */
119     wrap: function (x, a, b) {
120         return a + this.mod(x - a, b - a);
121     },
122 
123     /**
124      * Clamp <code>x</code> within the interval <code>[a, b]</code>. If
125      * <code>x</code> is below <code>a</code>, increase it to <code>a</code>. If
126      * it's above <code>b</code>, decrease it to <code>b</code>.
127      */
128     clamp: function (x, a, b) {
129         return Math.min(Math.max(x, a), b);
130     },
131 
132     /**
133      * A way of clamping a periodic variable. If <code>x</code> is congruent mod
134      * <code>period</code> to a point in <code>[a, b]</code>, return that point.
135      * Otherwise, wrap it into <code>[mid - period/2, mid + period/2]</code>,
136      * where <code>mid</code> is the mean of <code>a</code> and <code>b</code>,
137      * and then clamp it to <code>[a, b]</code> from there.
138      */
139     wrapAndClamp: function (x, a, b, period) {
140         var mid = 0.5 * (a + b),
141             half_period = 0.5 * period;
142 
143         return this.clamp(
144             this.wrap(
145                 x,
146                 mid - half_period,
147                 mid + half_period
148             ),
149             a,
150             b
151         );
152     },
153 
154     /**
155      * Initializes a vector of size <tt>n</tt> wih coefficients set to the init value (default 0)
156      * @param {Number} n Length of the vector
157      * @param {Number} [init=0] Initial value for each coefficient
158      * @returns {Array} An array of length <tt>n</tt>
159      */
160     vector: function (n, init) {
161         var r, i;
162 
163         init = init || 0;
164         r = [];
165 
166         for (i = 0; i < n; i++) {
167             r[i] = init;
168         }
169 
170         return r;
171     },
172 
173     /**
174      * Initializes a matrix as an array of rows with the given value.
175      * @param {Number} n Number of rows
176      * @param {Number} [m=n] Number of columns
177      * @param {Number} [init=0] Initial value for each coefficient
178      * @returns {Array} A <tt>n</tt> times <tt>m</tt>-matrix represented by a
179      * two-dimensional array. The inner arrays hold the columns, the outer array holds the rows.
180      */
181     matrix: function (n, m, init) {
182         var r, i, j;
183 
184         init = init || 0;
185         m = m || n;
186         r = [];
187 
188         for (i = 0; i < n; i++) {
189             r[i] = [];
190 
191             for (j = 0; j < m; j++) {
192                 r[i][j] = init;
193             }
194         }
195 
196         return r;
197     },
198 
199     /**
200      * Generates an identity matrix. If n is a number and m is undefined or not a number, a square matrix is generated,
201      * if n and m are both numbers, an nxm matrix is generated.
202      * @param {Number} n Number of rows
203      * @param {Number} [m=n] Number of columns
204      * @returns {Array} A square matrix of length <tt>n</tt> with all coefficients equal to 0 except a_(i,i), i out of (1, ..., n), if <tt>m</tt> is undefined or not a number
205      * or a <tt>n</tt> times <tt>m</tt>-matrix with a_(i,j) = 0 and a_(i,i) = 1 if m is a number.
206      */
207     identity: function (n, m) {
208         var r, i;
209 
210         if (m === undef && typeof m !== "number") {
211             m = n;
212         }
213 
214         r = this.matrix(n, m);
215 
216         for (i = 0; i < Math.min(n, m); i++) {
217             r[i][i] = 1;
218         }
219 
220         return r;
221     },
222 
223     /**
224      * Generates a 4x4 matrix for 3D to 2D projections.
225      * @param {Number} l Left
226      * @param {Number} r Right
227      * @param {Number} t Top
228      * @param {Number} b Bottom
229      * @param {Number} n Near
230      * @param {Number} f Far
231      * @returns {Array} 4x4 Matrix
232      */
233     frustum: function (l, r, b, t, n, f) {
234         var ret = this.matrix(4, 4);
235 
236         ret[0][0] = (n * 2) / (r - l);
237         ret[0][1] = 0;
238         ret[0][2] = (r + l) / (r - l);
239         ret[0][3] = 0;
240 
241         ret[1][0] = 0;
242         ret[1][1] = (n * 2) / (t - b);
243         ret[1][2] = (t + b) / (t - b);
244         ret[1][3] = 0;
245 
246         ret[2][0] = 0;
247         ret[2][1] = 0;
248         ret[2][2] = -(f + n) / (f - n);
249         ret[2][3] = -(f * n * 2) / (f - n);
250 
251         ret[3][0] = 0;
252         ret[3][1] = 0;
253         ret[3][2] = -1;
254         ret[3][3] = 0;
255 
256         return ret;
257     },
258 
259     /**
260      * Generates a 4x4 matrix for 3D to 2D projections.
261      * @param {Number} fov Field of view in vertical direction, given in rad.
262      * @param {Number} ratio Aspect ratio of the projection plane.
263      * @param {Number} n Near
264      * @param {Number} f Far
265      * @returns {Array} 4x4 Projection Matrix
266      */
267     projection: function (fov, ratio, n, f) {
268         var t = n * Math.tan(fov / 2),
269             r = t * ratio;
270 
271         return this.frustum(-r, r, -t, t, n, f);
272     },
273 
274     /**
275      * Multiplies a vector vec to a matrix mat: mat * vec. The matrix is interpreted by this function as an array of rows.
276      * Please note: This
277      * function does not check if the dimensions match.
278      * @param {Array} mat Two-dimensional array of numbers. The inner arrays describe the columns, the outer ones the matrix' rows.
279      * @param {Array} vec Array of numbers
280      * @returns {Array} Array of numbers containing the result
281      * @example
282      * var A = [[2, 1],
283      *          [2, 3]],
284      *     b = [4, 5],
285      *     c;
286      * c = JXG.Math.matVecMult(A, b);
287      * // c === [13, 23];
288      */
289     matVecMult: function (mat, vec) {
290         var i, k, s,
291             m = mat.length,
292             n = vec.length,
293             res = [];
294 
295         if (n === 3) {
296             for (i = 0; i < m; i++) {
297                 res[i] = mat[i][0] * vec[0] + mat[i][1] * vec[1] + mat[i][2] * vec[2];
298             }
299         } else {
300             for (i = 0; i < m; i++) {
301                 s = 0;
302                 for (k = 0; k < n; k++) {
303                     s += mat[i][k] * vec[k];
304                 }
305                 res[i] = s;
306             }
307         }
308         return res;
309     },
310 
311     /**
312      * Multiplies a vector vec to a matrix mat from the left: vec * mat.
313      * The matrix is interpreted by this function as an array of rows.
314      * Please note: This function does not check if the dimensions match.
315      * @param {Array} vec Array of numbers
316      * @param {Array} mat Two-dimensional array of numbers. The inner arrays describe the columns,
317      *  the outer ones the matrix' rows.
318      * @returns {Array} Array of numbers containing the result
319      * @example
320      * var A = [[2, 1],
321      *          [2, 3]],
322      *     b = [4, 5],
323      *     c;
324      * c = JXG.Math.vecMatMult(b, A);
325      * // c === [18, 16];
326      */
327     vecMatMult: function (vec, mat) {
328         var i, k, s,
329             m = mat.length,
330             n = vec.length,
331             res = [];
332 
333         if (n === 3) {
334             for (i = 0; i < m; i++) {
335                 res[i] = vec[0] * mat[0][i] + vec[1] * mat[1][i] + vec[2] * mat[2][i];
336             }
337         } else {
338             for (i = 0; i < n; i++) {
339                 s = 0;
340                 for (k = 0; k < m; k++) {
341                     s += vec[k] * mat[k][i];
342                 }
343                 res[i] = s;
344             }
345         }
346         return res;
347     },
348 
349     /**
350      * Computes the product of the two matrices: mat1 * mat2.
351      * Returns a new matrix array.
352      *
353      * @param {Array} mat1 Two-dimensional array of numbers
354      * @param {Array} mat2 Two-dimensional array of numbers
355      * @returns {Array} Two-dimensional Array of numbers containing result
356      */
357     matMatMult: function (mat1, mat2) {
358         var i, j, s, k,
359             m = mat1.length,
360             n = m > 0 ? mat2[0].length : 0,
361             m2 = mat2.length,
362             res = this.matrix(m, n);
363 
364         for (i = 0; i < m; i++) {
365             for (j = 0; j < n; j++) {
366                 s = 0;
367                 for (k = 0; k < m2; k++) {
368                     s += mat1[i][k] * mat2[k][j];
369                 }
370                 res[i][j] = s;
371             }
372         }
373         return res;
374     },
375 
376     /**
377      * Multiply a matrix mat by a scalar alpha: mat * scalar
378      *
379      * @param {Array} mat Two-dimensional array of numbers
380      * @param {Number} alpha Scalar
381      * @returns {Array} Two-dimensional Array of numbers containing result
382      */
383     matNumberMult: function (mat, alpha) {
384         var i, j,
385             m = mat.length,
386             n = m > 0 ? mat[0].length : 0,
387             res = this.matrix(m, n);
388 
389         for (i = 0; i < m; i++) {
390             for (j = 0; j < n; j++) {
391                 res[i][j] = mat[i][j] * alpha;
392             }
393         }
394         return res;
395     },
396 
397     /**
398      * Compute the sum of two matrices: mat1 + mat2.
399      * Returns a new matrix object.
400      *
401      * @param {Array} mat1 Two-dimensional array of numbers
402      * @param {Array} mat2 Two-dimensional array of numbers
403      * @returns {Array} Two-dimensional Array of numbers containing result
404      */
405     matMatAdd: function (mat1, mat2) {
406         var i, j,
407             m = mat1.length,
408             n = m > 0 ? mat1[0].length : 0,
409             res = this.matrix(m, n);
410 
411         for (i = 0; i < m; i++) {
412             for (j = 0; j < n; j++) {
413                 res[i][j] = mat1[i][j] + mat2[i][j];
414             }
415         }
416         return res;
417     },
418 
419     /**
420      * Transposes a matrix given as a two-dimensional array.
421      * @param {Array} M The matrix to be transposed
422      * @returns {Array} The transpose of M
423      */
424     transpose: function (M) {
425         var MT, i, j, m, n;
426 
427         // number of rows of M
428         m = M.length;
429         // number of columns of M
430         n = M.length > 0 ? M[0].length : 0;
431         MT = this.matrix(n, m);
432 
433         for (i = 0; i < n; i++) {
434             for (j = 0; j < m; j++) {
435                 MT[i][j] = M[j][i];
436             }
437         }
438 
439         return MT;
440     },
441 
442     /**
443      * Compute the inverse of an <i>(n x n)</i>-matrix by Gauss elimination.
444      *
445      * @param {Array} A matrix
446      * @returns {Array} Inverse matrix of A or empty array (i.e. []) in case A is singular.
447      */
448     inverse: function (Ain) {
449         var i, j, k, r, s,
450             eps = this.eps * this.eps,
451             ma, swp,
452             n = Ain.length,
453             A = [],
454             p = [],
455             hv = [];
456 
457         for (i = 0; i < n; i++) {
458             A[i] = [];
459             for (j = 0; j < n; j++) {
460                 A[i][j] = Ain[i][j];
461             }
462             p[i] = i;
463         }
464 
465         for (j = 0; j < n; j++) {
466             // Pivot search
467             ma = Math.abs(A[j][j]);
468             r = j;
469 
470             for (i = j + 1; i < n; i++) {
471                 if (Math.abs(A[i][j]) > ma) {
472                     ma = Math.abs(A[i][j]);
473                     r = i;
474                 }
475             }
476 
477             // Singular matrix
478             if (ma <= eps) {
479                 JXG.warn('JXG.Math.inverse: singular matrix');
480                 return [];
481             }
482 
483             // swap rows:
484             if (r > j) {
485                 for (k = 0; k < n; k++) {
486                     swp = A[j][k];
487                     A[j][k] = A[r][k];
488                     A[r][k] = swp;
489                 }
490 
491                 swp = p[j];
492                 p[j] = p[r];
493                 p[r] = swp;
494             }
495 
496             // transformation:
497             s = 1.0 / A[j][j];
498             for (i = 0; i < n; i++) {
499                 A[i][j] *= s;
500             }
501             A[j][j] = s;
502 
503             for (k = 0; k < n; k++) {
504                 if (k !== j) {
505                     for (i = 0; i < n; i++) {
506                         if (i !== j) {
507                             A[i][k] -= A[i][j] * A[j][k];
508                         }
509                     }
510                     A[j][k] = -s * A[j][k];
511                 }
512             }
513         }
514 
515         // swap columns:
516         for (i = 0; i < n; i++) {
517             for (k = 0; k < n; k++) {
518                 hv[p[k]] = A[i][k];
519             }
520             for (k = 0; k < n; k++) {
521                 A[i][k] = hv[k];
522             }
523         }
524 
525         return A;
526     },
527 
528     /**
529      * Trace of a square matrix, given as a two-dimensional array.
530      * @param {Array} M Square matrix
531      * @returns {Number} The trace of M, NaN if M is not square.
532      */
533     trace: function (M) {
534         var i, m, n,
535             t = 0.0;
536 
537         // number of rows of M
538         m = M.length;
539         // number of columns of M
540         n = M.length > 0 ? M[0].length : 0;
541         if (m !== n) {
542             return NaN;
543         }
544         for (i = 0; i < n; i++) {
545             t += M[i][i];
546         }
547 
548         return t;
549     },
550 
551     /**
552      * Inner product of two vectors a and b. n is the length of the vectors.
553      * @param {Array} a Vector
554      * @param {Array} b Vector
555      * @param {Number} [n] Length of the Vectors. If not given the length of the first vector is taken.
556      * @returns {Number} The inner product of a and b.
557      */
558     innerProduct: function (a, b, n) {
559         var i,
560             s = 0;
561 
562         if (n === undef || !Type.isNumber(n)) {
563             n = a.length;
564         }
565 
566         for (i = 0; i < n; i++) {
567             s += a[i] * b[i];
568         }
569 
570         return s;
571     },
572 
573     /**
574      * Calculates the cross product of two vectors both of length three.
575      * In case of homogeneous coordinates this is either
576      * <ul>
577      * <li>the intersection of two lines</li>
578      * <li>the line through two points</li>
579      * </ul>
580      * @param {Array} c1 Homogeneous coordinates of line or point 1
581      * @param {Array} c2 Homogeneous coordinates of line or point 2
582      * @returns {Array} vector of length 3: homogeneous coordinates of the resulting point / line.
583      */
584     crossProduct: function (c1, c2) {
585         return [
586             c1[1] * c2[2] - c1[2] * c2[1],
587             c1[2] * c2[0] - c1[0] * c2[2],
588             c1[0] * c2[1] - c1[1] * c2[0]
589         ];
590     },
591 
592     /**
593      * Euclidean norm of a vector.
594      *
595      * @param {Array} a Array containing a vector.
596      * @param {Number} n (Optional) length of the array.
597      * @returns {Number} Euclidean norm of the vector.
598      */
599     norm: function (a, n) {
600         var i,
601             sum = 0.0;
602 
603         if (n === undef || !Type.isNumber(n)) {
604             n = a.length;
605         }
606 
607         for (i = 0; i < n; i++) {
608             sum += a[i] * a[i];
609         }
610 
611         return Math.sqrt(sum);
612     },
613 
614     /**
615      * Compute a * x + y for a scalar a and vectors x and y.
616      *
617      * @param {Number} a
618      * @param {Array} x
619      * @param {Array} y
620      * @returns {Array}
621      */
622     axpy: function (a, x, y) {
623         var i,
624             le = x.length,
625             p = [];
626         for (i = 0; i < le; i++) {
627             p[i] = a * x[i] + y[i];
628         }
629         return p;
630     },
631 
632     /**
633      * Compute the factorial of a positive integer. If a non-integer value
634      * is given, the fraction will be ignored.
635      * @function
636      * @param {Number} n
637      * @returns {Number} n! = n*(n-1)*...*2*1
638      */
639     factorial: memoizer(function (n) {
640         if (n < 0) {
641             return NaN;
642         }
643 
644         n = Math.floor(n);
645 
646         if (n === 0 || n === 1) {
647             return 1;
648         }
649 
650         return n * this.factorial(n - 1);
651     }),
652 
653     /**
654      * Computes the binomial coefficient n over k.
655      * @function
656      * @param {Number} n Fraction will be ignored
657      * @param {Number} k Fraction will be ignored
658      * @returns {Number} The binomial coefficient n over k
659      */
660     binomial: memoizer(function (n, k) {
661         var b, i;
662 
663         if (k > n || k < 0) {
664             return NaN;
665         }
666 
667         k = Math.round(k);
668         n = Math.round(n);
669 
670         if (k === 0 || k === n) {
671             return 1;
672         }
673 
674         b = 1;
675 
676         for (i = 0; i < k; i++) {
677             b *= n - i;
678             b /= i + 1;
679         }
680 
681         return b;
682     }),
683 
684     /**
685      * Calculates the cosine hyperbolicus of x.
686      * @function
687      * @param {Number} x The number the cosine hyperbolicus will be calculated of.
688      * @returns {Number} Cosine hyperbolicus of the given value.
689      */
690     cosh:
691         Math.cosh ||
692         function (x) {
693             return (Math.exp(x) + Math.exp(-x)) * 0.5;
694         },
695 
696     /**
697      * Sine hyperbolicus of x.
698      * @function
699      * @param {Number} x The number the sine hyperbolicus will be calculated of.
700      * @returns {Number} Sine hyperbolicus of the given value.
701      */
702     sinh:
703         Math.sinh ||
704         function (x) {
705             return (Math.exp(x) - Math.exp(-x)) * 0.5;
706         },
707 
708     /**
709      * Hyperbolic arc-cosine of a number.
710      * @function
711      * @param {Number} x
712      * @returns {Number}
713      */
714     acosh:
715         Math.acosh ||
716         function (x) {
717             return Math.log(x + Math.sqrt(x * x - 1));
718         },
719 
720     /**
721      * Hyperbolic arcsine of a number
722      * @function
723      * @param {Number} x
724      * @returns {Number}
725      */
726     asinh:
727         Math.asinh ||
728         function (x) {
729             if (x === -Infinity) {
730                 return x;
731             }
732             return Math.log(x + Math.sqrt(x * x + 1));
733         },
734 
735     /**
736      * Computes the cotangent of x.
737      * @function
738      * @param {Number} x The number the cotangent will be calculated of.
739      * @returns {Number} Cotangent of the given value.
740      */
741     cot: function (x) {
742         return 1 / Math.tan(x);
743     },
744 
745     /**
746      * Computes the inverse cotangent of x.
747      * @param {Number} x The number the inverse cotangent will be calculated of.
748      * @returns {Number} Inverse cotangent of the given value.
749      */
750     acot: function (x) {
751         return (x >= 0 ? 0.5 : -0.5) * Math.PI - Math.atan(x);
752     },
753 
754     /**
755      * Compute n-th real root of a real number. n must be strictly positive integer.
756      * If n is odd, the real n-th root exists and is negative.
757      * For n even, for negative valuees of x NaN is returned
758      * @param  {Number} x radicand. Must be non-negative, if n even.
759      * @param  {Number} n index of the root. must be strictly positive integer.
760      * @returns {Number} returns real root or NaN
761      *
762      * @example
763      * nthroot(16, 4): 2
764      * nthroot(-27, 3): -3
765      * nthroot(-4, 2): NaN
766      */
767     nthroot: function (x, n) {
768         var inv = 1 / n;
769 
770         if (n <= 0 || Math.floor(n) !== n) {
771             return NaN;
772         }
773 
774         if (x === 0.0) {
775             return 0.0;
776         }
777 
778         if (x > 0) {
779             return Math.exp(inv * Math.log(x));
780         }
781 
782         // From here on, x is negative
783         if (n % 2 === 1) {
784             return -Math.exp(inv * Math.log(-x));
785         }
786 
787         // x negative, even root
788         return NaN;
789     },
790 
791     /**
792      * Computes cube root of real number
793      * Polyfill for Math.cbrt().
794      *
795      * @function
796      * @param  {Number} x Radicand
797      * @returns {Number} Cube root of x.
798      */
799     cbrt:
800         Math.cbrt ||
801         function (x) {
802             return this.nthroot(x, 3);
803         },
804 
805     /**
806      * Compute base to the power of exponent.
807      * @param {Number} base
808      * @param {Number} exponent
809      * @returns {Number} base to the power of exponent.
810      */
811     pow: function (base, exponent) {
812         if (base === 0) {
813             if (exponent === 0) {
814                 return 1;
815             }
816             return 0;
817         }
818 
819         // exponent is an integer
820         if (Math.floor(exponent) === exponent) {
821             return Math.pow(base, exponent);
822         }
823 
824         // exponent is not an integer
825         if (base > 0) {
826             return Math.exp(exponent * Math.log(base));
827         }
828 
829         return NaN;
830     },
831 
832     /**
833      * Compute base to the power of the rational exponent m / n.
834      * This function first reduces the fraction m/n and then computes
835      * JXG.Math.pow(base, m/n).
836      *
837      * This function is necessary to have the same results for e.g.
838      * (-8)^(1/3) = (-8)^(2/6) = -2
839      * @param {Number} base
840      * @param {Number} m numerator of exponent
841      * @param {Number} n denominator of exponent
842      * @returns {Number} base to the power of exponent.
843      */
844     ratpow: function (base, m, n) {
845         var g;
846         if (m === 0) {
847             return 1;
848         }
849         if (n === 0) {
850             return NaN;
851         }
852 
853         g = this.gcd(m, n);
854         return this.nthroot(this.pow(base, m / g), n / g);
855     },
856 
857     /**
858      * Logarithm to base 10.
859      * @param {Number} x
860      * @returns {Number} log10(x) Logarithm of x to base 10.
861      */
862     log10: function (x) {
863         return Math.log(x) / Math.log(10.0);
864     },
865 
866     /**
867      * Logarithm to base 2.
868      * @param {Number} x
869      * @returns {Number} log2(x) Logarithm of x to base 2.
870      */
871     log2: function (x) {
872         return Math.log(x) / Math.log(2.0);
873     },
874 
875     /**
876      * Logarithm to arbitrary base b. If b is not given, natural log is taken, i.e. b = e.
877      * @param {Number} x
878      * @param {Number} b base
879      * @returns {Number} log(x, b) Logarithm of x to base b, that is log(x)/log(b).
880      */
881     log: function (x, b) {
882         if (b !== undefined && Type.isNumber(b)) {
883             return Math.log(x) / Math.log(b);
884         }
885 
886         return Math.log(x);
887     },
888 
889     /**
890      * The sign() function returns the sign of a number, indicating whether the number is positive, negative or zero.
891      *
892      * @function
893      * @param  {Number} x A Number
894      * @returns {Number}  This function has 5 kinds of return values,
895      *    1, -1, 0, -0, NaN, which represent "positive number", "negative number", "positive zero", "negative zero"
896      *    and NaN respectively.
897      */
898     sign:
899         Math.sign ||
900         function (x) {
901             x = +x; // convert to a number
902             if (x === 0 || isNaN(x)) {
903                 return x;
904             }
905             return x > 0 ? 1 : -1;
906         },
907 
908     /**
909      * A square & multiply algorithm to compute base to the power of exponent.
910      * Implementated by Wolfgang Riedl.
911      *
912      * @param {Number} base
913      * @param {Number} exponent
914      * @returns {Number} Base to the power of exponent
915      */
916     squampow: function (base, exponent) {
917         var result;
918 
919         if (Math.floor(exponent) === exponent) {
920             // exponent is integer (could be zero)
921             result = 1;
922 
923             if (exponent < 0) {
924                 // invert: base
925                 base = 1.0 / base;
926                 exponent *= -1;
927             }
928 
929             while (exponent !== 0) {
930                 if (exponent & 1) {
931                     result *= base;
932                 }
933 
934                 exponent >>= 1;
935                 base *= base;
936             }
937             return result;
938         }
939 
940         return this.pow(base, exponent);
941     },
942 
943     /**
944      * Greatest common divisor (gcd) of two numbers.
945      * See {@link <a href="https://rosettacode.org/wiki/Greatest_common_divisor#JavaScript">rosettacode.org</a>}.
946      *
947      * @param  {Number} a First number
948      * @param  {Number} b Second number
949      * @returns {Number}   gcd(a, b) if a and b are numbers, NaN else.
950      */
951     gcd: function (a, b) {
952         var tmp,
953             endless = true;
954 
955         a = Math.abs(a);
956         b = Math.abs(b);
957 
958         if (!(Type.isNumber(a) && Type.isNumber(b))) {
959             return NaN;
960         }
961         if (b > a) {
962             tmp = a;
963             a = b;
964             b = tmp;
965         }
966 
967         while (endless) {
968             a %= b;
969             if (a === 0) {
970                 return b;
971             }
972             b %= a;
973             if (b === 0) {
974                 return a;
975             }
976         }
977     },
978 
979     /**
980      * Least common multiple (lcm) of two numbers.
981      *
982      * @param  {Number} a First number
983      * @param  {Number} b Second number
984      * @returns {Number}   lcm(a, b) if a and b are numbers, NaN else.
985      */
986     lcm: function (a, b) {
987         var ret;
988 
989         if (!(Type.isNumber(a) && Type.isNumber(b))) {
990             return NaN;
991         }
992 
993         ret = a * b;
994         if (ret !== 0) {
995             return ret / this.gcd(a, b);
996         }
997 
998         return 0;
999     },
1000 
1001     /**
1002      * Special use of Math.round function to round not only to integers but also to chosen decimal values.
1003      *
1004      * @param {Number} value Value to be rounded.
1005      * @param {Number} step Distance between the values to be rounded to. (default: 1.0)
1006      * @param {Number} [min] If set, it will be returned the maximum of value and min.
1007      * @param {Number} [max] If set, it will be returned the minimum of value and max.
1008      * @returns {Number} Fitted value.
1009      */
1010     roundToStep: function (value, step, min, max) {
1011         var n = value,
1012             tmp, minOr0;
1013 
1014         // for performance
1015         if (!Type.exists(step) && !Type.exists(min) && !Type.exists(max)) {
1016             return n;
1017         }
1018 
1019         if (JXG.exists(max)) {
1020             n = Math.min(n, max);
1021         }
1022         if (JXG.exists(min)) {
1023             n = Math.max(n, min);
1024         }
1025 
1026         minOr0 = min || 0;
1027 
1028         if (JXG.exists(step)) {
1029             tmp = (n - minOr0) / step;
1030             if (Number.isInteger(tmp)) {
1031                 return n;
1032             }
1033 
1034             tmp = Math.round(tmp);
1035             n = minOr0 + tmp * step;
1036         }
1037 
1038         if (JXG.exists(max)) {
1039             n = Math.min(n, max);
1040         }
1041         if (JXG.exists(min)) {
1042             n = Math.max(n, min);
1043         }
1044 
1045         return n;
1046     },
1047 
1048     /**
1049      *  Error function, see {@link https://en.wikipedia.org/wiki/Error_function}.
1050      *
1051      * @see JXG.Math.ProbFuncs.erf
1052      * @param  {Number} x
1053      * @returns {Number}
1054      */
1055     erf: function (x) {
1056         return this.ProbFuncs.erf(x);
1057     },
1058 
1059     /**
1060      * Complementary error function, i.e. 1 - erf(x).
1061      *
1062      * @see JXG.Math.erf
1063      * @see JXG.Math.ProbFuncs.erfc
1064      * @param  {Number} x
1065      * @returns {Number}
1066      */
1067     erfc: function (x) {
1068         return this.ProbFuncs.erfc(x);
1069     },
1070 
1071     /**
1072      * Inverse of error function
1073      *
1074      * @see JXG.Math.erf
1075      * @see JXG.Math.ProbFuncs.erfi
1076      * @param  {Number} x
1077      * @returns {Number}
1078      */
1079     erfi: function (x) {
1080         return this.ProbFuncs.erfi(x);
1081     },
1082 
1083     /**
1084      * Normal distribution function
1085      *
1086      * @see JXG.Math.ProbFuncs.ndtr
1087      * @param  {Number} x
1088      * @returns {Number}
1089      */
1090     ndtr: function (x) {
1091         return this.ProbFuncs.ndtr(x);
1092     },
1093 
1094     /**
1095      * Inverse of normal distribution function
1096      *
1097      * @see JXG.Math.ndtr
1098      * @see JXG.Math.ProbFuncs.ndtri
1099      * @param  {Number} x
1100      * @returns {Number}
1101      */
1102     ndtri: function (x) {
1103         return this.ProbFuncs.ndtri(x);
1104     },
1105 
1106     /**
1107      * Returns sqrt(a * a + b * b) for a variable number of arguments.
1108      * This is a naive implementation which might be faster than Math.hypot.
1109      * The latter is numerically more stable.
1110      *
1111      * @param {Number} a Variable number of arguments.
1112      * @returns Number
1113      */
1114     hypot: function () {
1115         var i, le, a, sum;
1116 
1117         le = arguments.length;
1118         for (i = 0, sum = 0.0; i < le; i++) {
1119             a = arguments[i];
1120             sum += a * a;
1121         }
1122         return Math.sqrt(sum);
1123     },
1124 
1125     /**
1126      * Heaviside unit step function. Returns 0 for x <, 1 for x > 0, and 0.5 for x == 0.
1127      *
1128      * @param {Number} x
1129      * @returns Number
1130      */
1131     hstep: function (x) {
1132         return (x > 0.0) ? 1 :
1133             ((x < 0.0) ? 0.0 : 0.5);
1134     },
1135 
1136     /**
1137      * Gamma function for real parameters by Lanczos approximation.
1138      * Implementation straight from {@link https://en.wikipedia.org/wiki/Lanczos_approximation}.
1139      *
1140      * @param {Number} z
1141      * @returns Number
1142      */
1143     gamma: function (z) {
1144         var x, y, t, i, le,
1145             g = 7,
1146             // n = 9,
1147             p = [
1148                 1.0,
1149                 676.5203681218851,
1150                 -1259.1392167224028,
1151                 771.32342877765313,
1152                 -176.61502916214059,
1153                 12.507343278686905,
1154                 -0.13857109526572012,
1155                 9.9843695780195716e-6,
1156                 1.5056327351493116e-7
1157             ];
1158 
1159         if (z < 0.5) {
1160             y = Math.PI / (Math.sin(Math.PI * z) * this.gamma(1 - z));  // Reflection formula
1161         } else {
1162             z -= 1;
1163             x = p[0];
1164             le = p.length;
1165             for (i = 1; i < le; i++) {
1166                 x += p[i] / (z + i);
1167             }
1168             t = z + g + 0.5;
1169             y = Math.sqrt(2 * Math.PI) * Math.pow(t, z + 0.5) * Math.exp(-t) * x;
1170         }
1171         return y;
1172     },
1173 
1174     /* ********************  Comparisons and logical operators ************** */
1175 
1176     /**
1177      * Logical test: a < b?
1178      *
1179      * @param {Number} a
1180      * @param {Number} b
1181      * @returns {Boolean}
1182      */
1183     lt: function (a, b) {
1184         return a < b;
1185     },
1186 
1187     /**
1188      * Logical test: a <= b?
1189      *
1190      * @param {Number} a
1191      * @param {Number} b
1192      * @returns {Boolean}
1193      */
1194     leq: function (a, b) {
1195         return a <= b;
1196     },
1197 
1198     /**
1199      * Logical test: a > b?
1200      *
1201      * @param {Number} a
1202      * @param {Number} b
1203      * @returns {Boolean}
1204      */
1205     gt: function (a, b) {
1206         return a > b;
1207     },
1208 
1209     /**
1210      * Logical test: a >= b?
1211      *
1212      * @param {Number} a
1213      * @param {Number} b
1214      * @returns {Boolean}
1215      */
1216     geq: function (a, b) {
1217         return a >= b;
1218     },
1219 
1220     /**
1221      * Logical test: a === b?
1222      *
1223      * @param {Number} a
1224      * @param {Number} b
1225      * @returns {Boolean}
1226      */
1227     eq: function (a, b) {
1228         return a === b;
1229     },
1230 
1231     /**
1232      * Logical test: a !== b?
1233      *
1234      * @param {Number} a
1235      * @param {Number} b
1236      * @returns {Boolean}
1237      */
1238     neq: function (a, b) {
1239         return a !== b;
1240     },
1241 
1242     /**
1243      * Logical operator: a && b?
1244      *
1245      * @param {Boolean} a
1246      * @param {Boolean} b
1247      * @returns {Boolean}
1248      */
1249     and: function (a, b) {
1250         return a && b;
1251     },
1252 
1253     /**
1254      * Logical operator: !a?
1255      *
1256      * @param {Boolean} a
1257      * @returns {Boolean}
1258      */
1259     not: function (a) {
1260         return !a;
1261     },
1262 
1263     /**
1264      * Logical operator: a || b?
1265      *
1266      * @param {Boolean} a
1267      * @param {Boolean} b
1268      * @returns {Boolean}
1269      */
1270     or: function (a, b) {
1271         return a || b;
1272     },
1273 
1274     /**
1275      * Logical operator: either a or b?
1276      *
1277      * @param {Boolean} a
1278      * @param {Boolean} b
1279      * @returns {Boolean}
1280      */
1281     xor: function (a, b) {
1282         return (a || b) && !(a && b);
1283     },
1284 
1285     /**
1286      *
1287      * Convert a floating point number to sign + integer + fraction.
1288      * fraction is given as nominator and denominator.
1289      * <p>
1290      * Algorithm: approximate the floating point number
1291      * by a continued fraction and simultaneously keep track
1292      * of its convergents.
1293      * Inspired by {@link https://kevinboone.me/rationalize.html}.
1294      *
1295      * @param {Number} x Number which is to be converted
1296      * @param {Number} [order=0.001] Small number determining the approximation precision.
1297      * @returns {Array} [sign, leading, nominator, denominator] where sign is 1 or -1.
1298      * @see JXG.toFraction
1299      *
1300      * @example
1301      * JXG.Math.decToFraction(0.33333333);
1302      * // Result: [ 1, 0, 1, 3 ]
1303      *
1304      * JXG.Math.decToFraction(0);
1305      * // Result: [ 1, 0, 0, 1 ]
1306      *
1307      * JXG.Math.decToFraction(-10.66666666666667);
1308      * // Result: [-1, 10, 2, 3 ]
1309     */
1310     decToFraction: function (x, order) {
1311         var lead, sign, a,
1312             n, n1, n2,
1313             d, d1, d2,
1314             it = 0,
1315             maxit = 20;
1316 
1317         order = Type.def(order, 0.001);
1318 
1319         // Round the number.
1320         // Otherwise, 0.999999999 would result in [0, 1, 1].
1321         x = Math.round(x * 1.e12) * 1.e-12;
1322 
1323         // Negative numbers:
1324         // The minus sign is handled in sign.
1325         sign = (x < 0) ? -1 : 1;
1326         x = Math.abs(x);
1327 
1328         // From now on we consider x to be nonnegative.
1329         lead = Math.floor(x);
1330         x -= Math.floor(x);
1331         a = 0.0;
1332         n2 = 1.0;
1333         n = n1 = a;
1334         d2 = 0.0;
1335         d = d1 = 1.0;
1336 
1337         while (x - Math.floor(x) > order && it < maxit) {
1338             x = 1 / (x - a);
1339             a = Math.floor(x);
1340             n = n2 + a * n1;
1341             d = d2 + a * d1;
1342             n2 = n1;
1343             d2 = d1;
1344             n1 = n;
1345             d1 = d;
1346             it++;
1347         }
1348         return [sign, lead, n, d];
1349     },
1350 
1351     /* *************************** Normalize *************************** */
1352 
1353     /**
1354      * Normalize the standard form [c, b0, b1, a, k, r, q0, q1].
1355      * @private
1356      * @param {Array} stdform The standard form to be normalized.
1357      * @returns {Array} The normalized standard form.
1358      */
1359     normalize: function (stdform) {
1360         var n,
1361             signr,
1362             a2 = 2 * stdform[3],
1363             r = stdform[4] / a2;
1364 
1365         stdform[5] = r;
1366         stdform[6] = -stdform[1] / a2;
1367         stdform[7] = -stdform[2] / a2;
1368 
1369         if (!isFinite(r)) {
1370             n = this.hypot(stdform[1], stdform[2]);
1371 
1372             stdform[0] /= n;
1373             stdform[1] /= n;
1374             stdform[2] /= n;
1375             stdform[3] = 0;
1376             stdform[4] = 1;
1377         } else if (Math.abs(r) >= 1) {
1378             stdform[0] = (stdform[6] * stdform[6] + stdform[7] * stdform[7] - r * r) / (2 * r);
1379             stdform[1] = -stdform[6] / r;
1380             stdform[2] = -stdform[7] / r;
1381             stdform[3] = 1 / (2 * r);
1382             stdform[4] = 1;
1383         } else {
1384             signr = r <= 0 ? -1 : 1;
1385             stdform[0] =
1386                 signr * (stdform[6] * stdform[6] + stdform[7] * stdform[7] - r * r) * 0.5;
1387             stdform[1] = -signr * stdform[6];
1388             stdform[2] = -signr * stdform[7];
1389             stdform[3] = signr / 2;
1390             stdform[4] = signr * r;
1391         }
1392 
1393         return stdform;
1394     },
1395 
1396     /**
1397      * Converts a two-dimensional array to a one-dimensional Float32Array that can be processed by WebGL.
1398      * @param {Array} m A matrix in a two-dimensional array.
1399      * @returns {Float32Array} A one-dimensional array containing the matrix in column wise notation. Provides a fall
1400      * back to the default JavaScript Array if Float32Array is not available.
1401      */
1402     toGL: function (m) {
1403         var v, i, j;
1404 
1405         if (typeof Float32Array === "function") {
1406             v = new Float32Array(16);
1407         } else {
1408             v = new Array(16);
1409         }
1410 
1411         if (m.length !== 4 && m[0].length !== 4) {
1412             return v;
1413         }
1414 
1415         for (i = 0; i < 4; i++) {
1416             for (j = 0; j < 4; j++) {
1417                 v[i + 4 * j] = m[i][j];
1418             }
1419         }
1420 
1421         return v;
1422     },
1423 
1424     /**
1425      * Theorem of Vieta: Given a set of simple zeroes x_0, ..., x_n
1426      * of a polynomial f, compute the coefficients s_k, (k=0,...,n-1)
1427      * of the polynomial of the form. See {@link https://de.wikipedia.org/wiki/Elementarsymmetrisches_Polynom}.
1428      * <p>
1429      *  f(x) = (x-x_0)*...*(x-x_n) =
1430      *  x^n + sum_{k=1}^{n} (-1)^(k) s_{k-1} x^(n-k)
1431      * </p>
1432      * @param {Array} x Simple zeroes of the polynomial.
1433      * @returns {Array} Coefficients of the polynomial.
1434      *
1435      */
1436     Vieta: function (x) {
1437         var n = x.length,
1438             s = [],
1439             m,
1440             k,
1441             y;
1442 
1443         s = x.slice();
1444         for (m = 1; m < n; ++m) {
1445             y = s[m];
1446             s[m] *= s[m - 1];
1447             for (k = m - 1; k >= 1; --k) {
1448                 s[k] += s[k - 1] * y;
1449             }
1450             s[0] += y;
1451         }
1452         return s;
1453     }
1454 };
1455 
1456 export default JXG.Math;
1457