1 /*
  2     Copyright 2008-2024
  3         Matthias Ehmann,
  4         Michael Gerhaeuser,
  5         Carsten Miller,
  6         Alfred Wassermann
  7 
  8     This file is part of JSXGraph.
  9 
 10     JSXGraph is free software dual licensed under the GNU LGPL or MIT License.
 11 
 12     You can redistribute it and/or modify it under the terms of the
 13 
 14       * GNU Lesser General Public License as published by
 15         the Free Software Foundation, either version 3 of the License, or
 16         (at your option) any later version
 17       OR
 18       * MIT License: https://github.com/jsxgraph/jsxgraph/blob/master/LICENSE.MIT
 19 
 20     JSXGraph is distributed in the hope that it will be useful,
 21     but WITHOUT ANY WARRANTY; without even the implied warranty of
 22     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 23     GNU Lesser General Public License for more details.
 24 
 25     You should have received a copy of the GNU Lesser General Public License and
 26     the MIT License along with JSXGraph. If not, see <https://www.gnu.org/licenses/>
 27     and <https://opensource.org/licenses/MIT/>.
 28  */
 29 
 30 /*global JXG: true, define: true*/
 31 /*jslint nomen: true, plusplus: true*/
 32 
 33 import JXG from "../jxg.js";
 34 import Const from "../base/constants.js";
 35 import Coords from "../base/coords.js";
 36 import Mat from "./math.js";
 37 import Extrapolate from "./extrapolate.js";
 38 import Numerics from "./numerics.js";
 39 import Statistics from "./statistics.js";
 40 import Geometry from "./geometry.js";
 41 import IntervalArithmetic from "./ia.js";
 42 import Type from "../utils/type.js";
 43 
 44 /**
 45  * Functions for plotting of curves.
 46  * @name JXG.Math.Plot
 47  * @exports Mat.Plot as JXG.Math.Plot
 48  * @namespace
 49  */
 50 Mat.Plot = {
 51     /**
 52      * Check if at least one point on the curve is finite and real.
 53      **/
 54     checkReal: function (points) {
 55         var b = false,
 56             i,
 57             p,
 58             len = points.length;
 59 
 60         for (i = 0; i < len; i++) {
 61             p = points[i].usrCoords;
 62             if (!isNaN(p[1]) && !isNaN(p[2]) && Math.abs(p[0]) > Mat.eps) {
 63                 b = true;
 64                 break;
 65             }
 66         }
 67         return b;
 68     },
 69 
 70     //----------------------------------------------------------------------
 71     // Plot algorithm v0
 72     //----------------------------------------------------------------------
 73     /**
 74      * Updates the data points of a parametric curve. This version is used if {@link JXG.Curve#doadvancedplot} is <tt>false</tt>.
 75      * @param {JXG.Curve} curve JSXGraph curve element
 76      * @param {Number} mi Left bound of curve
 77      * @param {Number} ma Right bound of curve
 78      * @param {Number} len Number of data points
 79      * @returns {JXG.Curve} Reference to the curve object.
 80      */
 81     updateParametricCurveNaive: function (curve, mi, ma, len) {
 82         var i,
 83             t,
 84             suspendUpdate = false,
 85             stepSize = (ma - mi) / len;
 86 
 87         for (i = 0; i < len; i++) {
 88             t = mi + i * stepSize;
 89             // The last parameter prevents rounding in usr2screen().
 90             curve.points[i].setCoordinates(
 91                 Const.COORDS_BY_USER,
 92                 [curve.X(t, suspendUpdate), curve.Y(t, suspendUpdate)],
 93                 false
 94             );
 95             curve.points[i]._t = t;
 96             suspendUpdate = true;
 97         }
 98         return curve;
 99     },
100 
101     //----------------------------------------------------------------------
102     // Plot algorithm v1
103     //----------------------------------------------------------------------
104     /**
105      * Crude and cheap test if the segment defined by the two points <tt>(x0, y0)</tt> and <tt>(x1, y1)</tt> is
106      * outside the viewport of the board. All parameters have to be given in screen coordinates.
107      *
108      * @private
109      * @deprecated
110      * @param {Number} x0
111      * @param {Number} y0
112      * @param {Number} x1
113      * @param {Number} y1
114      * @param {JXG.Board} board
115      * @returns {Boolean} <tt>true</tt> if the given segment is outside the visible area.
116      */
117     isSegmentOutside: function (x0, y0, x1, y1, board) {
118         return (
119             (y0 < 0 && y1 < 0) ||
120             (y0 > board.canvasHeight && y1 > board.canvasHeight) ||
121             (x0 < 0 && x1 < 0) ||
122             (x0 > board.canvasWidth && x1 > board.canvasWidth)
123         );
124     },
125 
126     /**
127      * Compares the absolute value of <tt>dx</tt> with <tt>MAXX</tt> and the absolute value of <tt>dy</tt>
128      * with <tt>MAXY</tt>.
129      *
130      * @private
131      * @deprecated
132      * @param {Number} dx
133      * @param {Number} dy
134      * @param {Number} MAXX
135      * @param {Number} MAXY
136      * @returns {Boolean} <tt>true</tt>, if <tt>|dx| < MAXX</tt> and <tt>|dy| < MAXY</tt>.
137      */
138     isDistOK: function (dx, dy, MAXX, MAXY) {
139         return Math.abs(dx) < MAXX && Math.abs(dy) < MAXY && !isNaN(dx + dy);
140     },
141 
142     /**
143      * @private
144      * @deprecated
145      */
146     isSegmentDefined: function (x0, y0, x1, y1) {
147         return !(isNaN(x0 + y0) && isNaN(x1 + y1));
148     },
149 
150     /**
151      * Updates the data points of a parametric curve. This version is used if {@link JXG.Curve#doadvancedplot} is <tt>true</tt>.
152      * Since 0.99 this algorithm is deprecated. It still can be used if {@link JXG.Curve#doadvancedplotold} is <tt>true</tt>.
153      *
154      * @deprecated
155      * @param {JXG.Curve} curve JSXGraph curve element
156      * @param {Number} mi Left bound of curve
157      * @param {Number} ma Right bound of curve
158      * @returns {JXG.Curve} Reference to the curve object.
159      */
160     updateParametricCurveOld: function (curve, mi, ma) {
161         var i, t, d, x, y,
162             x0, y0,// t0,
163             top,
164             depth,
165             MAX_DEPTH,
166             MAX_XDIST,
167             MAX_YDIST,
168             suspendUpdate = false,
169             po = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
170             dyadicStack = [],
171             depthStack = [],
172             pointStack = [],
173             divisors = [],
174             distOK = false,
175             j = 0,
176             distFromLine = function (p1, p2, p0) {
177                 var lbda,
178                     x0 = p0[1] - p1[1],
179                     y0 = p0[2] - p1[2],
180                     x1 = p2[0] - p1[1],
181                     y1 = p2[1] - p1[2],
182                     den = x1 * x1 + y1 * y1;
183 
184                 if (den >= Mat.eps) {
185                     lbda = (x0 * x1 + y0 * y1) / den;
186                     if (lbda > 0) {
187                         if (lbda <= 1) {
188                             x0 -= lbda * x1;
189                             y0 -= lbda * y1;
190                             // lbda = 1.0;
191                         } else {
192                             x0 -= x1;
193                             y0 -= y1;
194                         }
195                     }
196                 }
197                 return Mat.hypot(x0, y0);
198             };
199 
200         JXG.deprecated("Curve.updateParametricCurveOld()");
201 
202         if (curve.board.updateQuality === curve.board.BOARD_QUALITY_LOW) {
203             MAX_DEPTH = 15;
204             MAX_XDIST = 10; // 10
205             MAX_YDIST = 10; // 10
206         } else {
207             MAX_DEPTH = 21;
208             MAX_XDIST = 0.7; // 0.7
209             MAX_YDIST = 0.7; // 0.7
210         }
211 
212         divisors[0] = ma - mi;
213         for (i = 1; i < MAX_DEPTH; i++) {
214             divisors[i] = divisors[i - 1] * 0.5;
215         }
216 
217         i = 1;
218         dyadicStack[0] = 1;
219         depthStack[0] = 0;
220 
221         t = mi;
222         po.setCoordinates(
223             Const.COORDS_BY_USER,
224             [curve.X(t, suspendUpdate), curve.Y(t, suspendUpdate)],
225             false
226         );
227 
228         // Now, there was a first call to the functions defining the curve.
229         // Defining elements like sliders have been evaluated.
230         // Therefore, we can set suspendUpdate to false, so that these defining elements
231         // need not be evaluated anymore for the rest of the plotting.
232         suspendUpdate = true;
233         x0 = po.scrCoords[1];
234         y0 = po.scrCoords[2];
235         // t0 = t;
236 
237         t = ma;
238         po.setCoordinates(
239             Const.COORDS_BY_USER,
240             [curve.X(t, suspendUpdate), curve.Y(t, suspendUpdate)],
241             false
242         );
243         x = po.scrCoords[1];
244         y = po.scrCoords[2];
245 
246         pointStack[0] = [x, y];
247 
248         top = 1;
249         depth = 0;
250 
251         curve.points = [];
252         curve.points[j++] = new Coords(Const.COORDS_BY_SCREEN, [x0, y0], curve.board, false);
253 
254         do {
255             distOK =
256                 this.isDistOK(x - x0, y - y0, MAX_XDIST, MAX_YDIST) ||
257                 this.isSegmentOutside(x0, y0, x, y, curve.board);
258             while (
259                 depth < MAX_DEPTH &&
260                 (!distOK || depth < 6) &&
261                 (depth <= 7 || this.isSegmentDefined(x0, y0, x, y))
262             ) {
263                 // We jump out of the loop if
264                 // * depth>=MAX_DEPTH or
265                 // * (depth>=6 and distOK) or
266                 // * (depth>7 and segment is not defined)
267 
268                 dyadicStack[top] = i;
269                 depthStack[top] = depth;
270                 pointStack[top] = [x, y];
271                 top += 1;
272 
273                 i = 2 * i - 1;
274                 // Here, depth is increased and may reach MAX_DEPTH
275                 depth++;
276                 // In that case, t is undefined and we will see a jump in the curve.
277                 t = mi + i * divisors[depth];
278 
279                 po.setCoordinates(
280                     Const.COORDS_BY_USER,
281                     [curve.X(t, suspendUpdate), curve.Y(t, suspendUpdate)],
282                     false,
283                     true
284                 );
285                 x = po.scrCoords[1];
286                 y = po.scrCoords[2];
287                 distOK =
288                     this.isDistOK(x - x0, y - y0, MAX_XDIST, MAX_YDIST) ||
289                     this.isSegmentOutside(x0, y0, x, y, curve.board);
290             }
291 
292             if (j > 1) {
293                 d = distFromLine(
294                     curve.points[j - 2].scrCoords,
295                     [x, y],
296                     curve.points[j - 1].scrCoords
297                 );
298                 if (d < 0.015) {
299                     j -= 1;
300                 }
301             }
302 
303             curve.points[j] = new Coords(Const.COORDS_BY_SCREEN, [x, y], curve.board, false);
304             curve.points[j]._t = t;
305             j += 1;
306 
307             x0 = x;
308             y0 = y;
309             // t0 = t;
310 
311             top -= 1;
312             x = pointStack[top][0];
313             y = pointStack[top][1];
314             depth = depthStack[top] + 1;
315             i = dyadicStack[top] * 2;
316         } while (top > 0 && j < 500000);
317 
318         curve.numberPoints = curve.points.length;
319 
320         return curve;
321     },
322 
323     //----------------------------------------------------------------------
324     // Plot algorithm v2
325     //----------------------------------------------------------------------
326 
327     /**
328      * Add a point to the curve plot. If the new point is too close to the previously inserted point,
329      * it is skipped.
330      * Used in {@link JXG.Curve._plotRecursive}.
331      *
332      * @private
333      * @param {JXG.Coords} pnt Coords to add to the list of points
334      */
335     _insertPoint_v2: function (curve, pnt, t) {
336         var lastReal = !isNaN(this._lastCrds[1] + this._lastCrds[2]), // The last point was real
337             newReal = !isNaN(pnt.scrCoords[1] + pnt.scrCoords[2]), // New point is real point
338             cw = curve.board.canvasWidth,
339             ch = curve.board.canvasHeight,
340             off = 500;
341 
342         newReal =
343             newReal &&
344             pnt.scrCoords[1] > -off &&
345             pnt.scrCoords[2] > -off &&
346             pnt.scrCoords[1] < cw + off &&
347             pnt.scrCoords[2] < ch + off;
348 
349         /*
350          * Prevents two consecutive NaNs or points wich are too close
351          */
352         if (
353             (!newReal && lastReal) ||
354             (newReal &&
355                 (!lastReal ||
356                     Math.abs(pnt.scrCoords[1] - this._lastCrds[1]) > 0.7 ||
357                     Math.abs(pnt.scrCoords[2] - this._lastCrds[2]) > 0.7))
358         ) {
359             pnt._t = t;
360             curve.points.push(pnt);
361             this._lastCrds = pnt.copy("scrCoords");
362         }
363     },
364 
365     /**
366      * Check if there is a single NaN function value at t0.
367      * @param {*} curve
368      * @param {*} t0
369      * @returns {Boolean} true if there is a second NaN point close by, false otherwise
370      */
371     neighborhood_isNaN_v2: function (curve, t0) {
372         var is_undef,
373             pnt = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
374             t,
375             p;
376 
377         t = t0 + Mat.eps;
378         pnt.setCoordinates(Const.COORDS_BY_USER, [curve.X(t, true), curve.Y(t, true)], false);
379         p = pnt.usrCoords;
380         is_undef = isNaN(p[1] + p[2]);
381         if (!is_undef) {
382             t = t0 - Mat.eps;
383             pnt.setCoordinates(
384                 Const.COORDS_BY_USER,
385                 [curve.X(t, true), curve.Y(t, true)],
386                 false
387             );
388             p = pnt.usrCoords;
389             is_undef = isNaN(p[1] + p[2]);
390             if (!is_undef) {
391                 return false;
392             }
393         }
394         return true;
395     },
396 
397     /**
398      * Investigate a function term at the bounds of intervals where
399      * the function is not defined, e.g. log(x) at x = 0.
400      *
401      * c is between a and b
402      * @private
403      * @param {JXG.Curve} curve JSXGraph curve element
404      * @param {Array} a Screen coordinates of the left interval bound
405      * @param {Array} b Screen coordinates of the right interval bound
406      * @param {Array} c Screen coordinates of the bisection point at (ta + tb) / 2
407      * @param {Number} ta Parameter which evaluates to a, i.e. [1, X(ta), Y(ta)] = a in screen coordinates
408      * @param {Number} tb Parameter which evaluates to b, i.e. [1, X(tb), Y(tb)] = b in screen coordinates
409      * @param {Number} tc (ta + tb) / 2 = tc. Parameter which evaluates to b, i.e. [1, X(tc), Y(tc)] = c in screen coordinates
410      * @param {Number} depth Actual recursion depth. The recursion stops if depth is equal to 0.
411      * @returns {JXG.Boolean} true if the point is inserted and the recursion should stop, false otherwise.
412      */
413     _borderCase: function (curve, a, b, c, ta, tb, tc, depth) {
414         var t, pnt, p,
415             p_good = null,
416             j,
417             max_it = 30,
418             is_undef = false,
419             t_nan, t_real;// t_real2;
420             // dx, dy,
421             // vx, vy, vx2, vy2;
422         // asymptote;
423 
424         if (depth <= 1) {
425             pnt = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false);
426             // Test if there is a single undefined point.
427             // If yes, we ignore it.
428             if (
429                 isNaN(a[1] + a[2]) &&
430                 !isNaN(c[1] + c[2]) &&
431                 !this.neighborhood_isNaN_v2(curve, ta)
432             ) {
433                 return false;
434             }
435             if (
436                 isNaN(b[1] + b[2]) &&
437                 !isNaN(c[1] + c[2]) &&
438                 !this.neighborhood_isNaN_v2(curve, tb)
439             ) {
440                 return false;
441             }
442             if (
443                 isNaN(c[1] + c[2]) &&
444                 (!isNaN(a[1] + a[2]) || !isNaN(b[1] + b[2])) &&
445                 !this.neighborhood_isNaN_v2(curve, tc)
446             ) {
447                 return false;
448             }
449 
450             j = 0;
451             // Bisect a, b and c until the point t_real is inside of the definition interval
452             // and as close as possible at the boundary.
453             // t_real2 is the second closest point.
454             do {
455                 // There are four cases:
456                 //  a  |  c  |  b
457                 // ---------------
458                 // inf | R   | R
459                 // R   | R   | inf
460                 // inf | inf | R
461                 // R   | inf | inf
462                 //
463                 if (isNaN(a[1] + a[2]) && !isNaN(c[1] + c[2])) {
464                     t_nan = ta;
465                     t_real = tc;
466                     // t_real2 = tb;
467                 } else if (isNaN(b[1] + b[2]) && !isNaN(c[1] + c[2])) {
468                     t_nan = tb;
469                     t_real = tc;
470                     // t_real2 = ta;
471                 } else if (isNaN(c[1] + c[2]) && !isNaN(b[1] + b[2])) {
472                     t_nan = tc;
473                     t_real = tb;
474                     // t_real2 = tb + (tb - tc);
475                 } else if (isNaN(c[1] + c[2]) && !isNaN(a[1] + a[2])) {
476                     t_nan = tc;
477                     t_real = ta;
478                     // t_real2 = ta - (tc - ta);
479                 } else {
480                     return false;
481                 }
482                 t = 0.5 * (t_nan + t_real);
483                 pnt.setCoordinates(
484                     Const.COORDS_BY_USER,
485                     [curve.X(t, true), curve.Y(t, true)],
486                     false
487                 );
488                 p = pnt.usrCoords;
489 
490                 is_undef = isNaN(p[1] + p[2]);
491                 if (is_undef) {
492                     t_nan = t;
493                 } else {
494                     // t_real2 = t_real;
495                     t_real = t;
496                 }
497                 ++j;
498             } while (is_undef && j < max_it);
499 
500             // If bisection was successful, take this point.
501             // Useful only for general curves, for function graph
502             // the code below overwrite p_good from here.
503             if (j < max_it) {
504                 p_good = p.slice();
505                 c = p.slice();
506                 t_real = t;
507             }
508 
509             // OK, bisection has been done now.
510             // t_real contains the closest inner point to the border of the interval we could find.
511             // t_real2 is the second nearest point to this boundary.
512             // Now we approximate the derivative by computing the slope of the line through these two points
513             // and test if it is "infinite", i.e larger than 400 in absolute values.
514             //
515             // vx = curve.X(t_real, true);
516             // vx2 = curve.X(t_real2, true);
517             // vy = curve.Y(t_real, true);
518             // vy2 = curve.Y(t_real2, true);
519             // dx = (vx - vx2) / (t_real - t_real2);
520             // dy = (vy - vy2) / (t_real - t_real2);
521 
522             if (p_good !== null) {
523                 this._insertPoint_v2(
524                     curve,
525                     new Coords(Const.COORDS_BY_USER, p_good, curve.board, false)
526                 );
527                 return true;
528             }
529         }
530         return false;
531     },
532 
533     /**
534      * Recursive interval bisection algorithm for curve plotting.
535      * Used in {@link JXG.Curve.updateParametricCurve}.
536      * @private
537      * @deprecated
538      * @param {JXG.Curve} curve JSXGraph curve element
539      * @param {Array} a Screen coordinates of the left interval bound
540      * @param {Number} ta Parameter which evaluates to a, i.e. [1, X(ta), Y(ta)] = a in screen coordinates
541      * @param {Array} b Screen coordinates of the right interval bound
542      * @param {Number} tb Parameter which evaluates to b, i.e. [1, X(tb), Y(tb)] = b in screen coordinates
543      * @param {Number} depth Actual recursion depth. The recursion stops if depth is equal to 0.
544      * @param {Number} delta If the distance of the bisection point at (ta + tb) / 2 from the point (a + b) / 2 is less then delta,
545      *                 the segment [a,b] is regarded as straight line.
546      * @returns {JXG.Curve} Reference to the curve object.
547      */
548     _plotRecursive_v2: function (curve, a, ta, b, tb, depth, delta) {
549         var tc,
550             c,
551             ds,
552             mindepth = 0,
553             isSmooth,
554             isJump,
555             isCusp,
556             cusp_threshold = 0.5,
557             jump_threshold = 0.99,
558             pnt = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false);
559 
560         if (curve.numberPoints > 65536) {
561             return;
562         }
563 
564         // Test if the function is undefined in an interval
565         if (depth < this.nanLevel && this._isUndefined(curve, a, ta, b, tb)) {
566             return this;
567         }
568 
569         if (depth < this.nanLevel && this._isOutside(a, ta, b, tb, curve.board)) {
570             return this;
571         }
572 
573         tc = (ta + tb) * 0.5;
574         pnt.setCoordinates(Const.COORDS_BY_USER, [curve.X(tc, true), curve.Y(tc, true)], false);
575         c = pnt.scrCoords;
576 
577         if (this._borderCase(curve, a, b, c, ta, tb, tc, depth)) {
578             return this;
579         }
580 
581         ds = this._triangleDists(a, b, c); // returns [d_ab, d_ac, d_cb, d_cd]
582 
583         isSmooth = depth < this.smoothLevel && ds[3] < delta;
584 
585         isJump =
586             (
587                 depth <= this.jumpLevel && (isNaN(ds[0]) || isNaN(ds[1]) || isNaN(ds[2]))
588             ) || (
589                 depth < this.jumpLevel &&
590                 (
591                     ds[2] > jump_threshold * ds[0] ||
592                     ds[1] > jump_threshold * ds[0] ||
593                     ds[0] === Infinity ||
594                     ds[1] === Infinity ||
595                     ds[2] === Infinity
596                 )
597             );
598 
599         isCusp = depth < this.smoothLevel + 2 && ds[0] < cusp_threshold * (ds[1] + ds[2]);
600 
601         if (isCusp) {
602             mindepth = 0;
603             isSmooth = false;
604         }
605 
606         --depth;
607 
608         if (isJump) {
609             this._insertPoint_v2(
610                 curve,
611                 new Coords(Const.COORDS_BY_SCREEN, [NaN, NaN], curve.board, false),
612                 tc
613             );
614         } else if (depth <= mindepth || isSmooth) {
615             this._insertPoint_v2(curve, pnt, tc);
616             //if (this._borderCase(a, b, c, ta, tb, tc, depth)) {}
617         } else {
618             this._plotRecursive_v2(curve, a, ta, c, tc, depth, delta);
619 
620             if (!isNaN(pnt.scrCoords[1] + pnt.scrCoords[2])) {
621                 this._insertPoint_v2(curve, pnt, tc);
622             }
623 
624             this._plotRecursive_v2(curve, c, tc, b, tb, depth, delta);
625         }
626 
627         return this;
628     },
629 
630     /**
631      * Updates the data points of a parametric curve. This version is used if {@link JXG.Curve#plotVersion} is <tt>3</tt>.
632      *
633      * @param {JXG.Curve} curve JSXGraph curve element
634      * @param {Number} mi Left bound of curve
635      * @param {Number} ma Right bound of curve
636      * @returns {JXG.Curve} Reference to the curve object.
637      */
638     updateParametricCurve_v2: function (curve, mi, ma) {
639         var ta, tb,
640             a, b,
641             suspendUpdate = false,
642             pa = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
643             pb = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
644             depth,
645             delta,
646             w2,
647             // h2,
648             bbox, ret_arr;
649 
650         //console.time("plot");
651         if (curve.board.updateQuality === curve.board.BOARD_QUALITY_LOW) {
652             depth = curve.evalVisProp('recursiondepthlow') || 13;
653             delta = 2;
654             // this.smoothLevel = 5; //depth - 7;
655             this.smoothLevel = depth - 6;
656             this.jumpLevel = 3;
657         } else {
658             depth = curve.evalVisProp('recursiondepthhigh') || 17;
659             delta = 2;
660             // smoothLevel has to be small for graphs in a huge interval.
661             // this.smoothLevel = 3; //depth - 7; // 9
662             this.smoothLevel = depth - 9; // 9
663             this.jumpLevel = 2;
664         }
665         this.nanLevel = depth - 4;
666 
667         curve.points = [];
668 
669         if (this.xterm === "x") {
670             // For function graphs we can restrict the plot interval
671             // to the visible area + plus margin
672             bbox = curve.board.getBoundingBox();
673             w2 = (bbox[2] - bbox[0]) * 0.3;
674             // h2 = (bbox[1] - bbox[3]) * 0.3;
675             ta = Math.max(mi, bbox[0] - w2);
676             tb = Math.min(ma, bbox[2] + w2);
677         } else {
678             ta = mi;
679             tb = ma;
680         }
681         pa.setCoordinates(
682             Const.COORDS_BY_USER,
683             [curve.X(ta, suspendUpdate), curve.Y(ta, suspendUpdate)],
684             false
685         );
686 
687         // The first function calls of X() and Y() are done. We can now
688         // switch `suspendUpdate` on. If supported by the functions, this
689         // avoids for the rest of the plotting algorithm, evaluation of any
690         // parent elements.
691         suspendUpdate = true;
692 
693         pb.setCoordinates(
694             Const.COORDS_BY_USER,
695             [curve.X(tb, suspendUpdate), curve.Y(tb, suspendUpdate)],
696             false
697         );
698 
699         // Find start and end points of the visible area (plus a certain margin)
700         ret_arr = this._findStartPoint(curve, pa.scrCoords, ta, pb.scrCoords, tb);
701         pa.setCoordinates(Const.COORDS_BY_SCREEN, ret_arr[0], false);
702         ta = ret_arr[1];
703         ret_arr = this._findStartPoint(curve, pb.scrCoords, tb, pa.scrCoords, ta);
704         pb.setCoordinates(Const.COORDS_BY_SCREEN, ret_arr[0], false);
705         tb = ret_arr[1];
706 
707         // Save the visible area.
708         // This can be used in Curve.hasPoint().
709         this._visibleArea = [ta, tb];
710 
711         // Start recursive plotting algorithm
712         a = pa.copy("scrCoords");
713         b = pb.copy("scrCoords");
714         pa._t = ta;
715         curve.points.push(pa);
716         this._lastCrds = pa.copy("scrCoords"); // Used in _insertPoint
717         this._plotRecursive_v2(curve, a, ta, b, tb, depth, delta);
718         pb._t = tb;
719         curve.points.push(pb);
720 
721         curve.numberPoints = curve.points.length;
722         //console.timeEnd("plot");
723 
724         return curve;
725     },
726 
727     //----------------------------------------------------------------------
728     // Plot algorithm v3
729     //----------------------------------------------------------------------
730     /**
731      *
732      * @param {JXG.Curve} curve JSXGraph curve element
733      * @param {*} pnt
734      * @param {*} t
735      * @param {*} depth
736      * @param {*} limes
737      * @private
738      */
739     _insertLimesPoint: function (curve, pnt, t, depth, limes) {
740         var p0, p1, p2;
741 
742         // Ignore jump point if it follows limes
743         if (
744             (Math.abs(this._lastUsrCrds[1]) === Infinity &&
745                 Math.abs(limes.left_x) === Infinity) ||
746             (Math.abs(this._lastUsrCrds[2]) === Infinity && Math.abs(limes.left_y) === Infinity)
747         ) {
748             // console.log("SKIP:", pnt.usrCoords, this._lastUsrCrds, limes);
749             return;
750         }
751 
752         // // Ignore jump left from limes
753         // if (Math.abs(limes.left_x) > 100 * Math.abs(this._lastUsrCrds[1])) {
754         //     x = Math.sign(limes.left_x) * Infinity;
755         // } else {
756         //     x = limes.left_x;
757         // }
758         // if (Math.abs(limes.left_y) > 100 * Math.abs(this._lastUsrCrds[2])) {
759         //     y = Math.sign(limes.left_y) * Infinity;
760         // } else {
761         //     y = limes.left_y;
762         // }
763         // //pnt.setCoordinates(Const.COORDS_BY_USER, [x, y], false);
764 
765         // Add points at a jump. pnt contains [NaN, NaN]
766         //console.log("Add", t, pnt.usrCoords, limes, depth)
767         p0 = new Coords(Const.COORDS_BY_USER, [limes.left_x, limes.left_y], curve.board);
768         p0._t = t;
769         curve.points.push(p0);
770 
771         if (
772             !isNaN(limes.left_x) &&
773             !isNaN(limes.left_y) &&
774             !isNaN(limes.right_x) &&
775             !isNaN(limes.right_y) &&
776             (Math.abs(limes.left_x - limes.right_x) > Mat.eps ||
777                 Math.abs(limes.left_y - limes.right_y) > Mat.eps)
778         ) {
779             p1 = new Coords(Const.COORDS_BY_SCREEN, pnt, curve.board);
780             p1._t = t;
781             curve.points.push(p1);
782         }
783 
784         p2 = new Coords(Const.COORDS_BY_USER, [limes.right_x, limes.right_y], curve.board);
785         p2._t = t;
786         curve.points.push(p2);
787         this._lastScrCrds = p2.copy("scrCoords");
788         this._lastUsrCrds = p2.copy("usrCoords");
789     },
790 
791     /**
792      * Add a point to the curve plot. If the new point is too close to the previously inserted point,
793      * it is skipped.
794      * Used in {@link JXG.Curve._plotRecursive}.
795      *
796      * @private
797      * @param {JXG.Curve} curve JSXGraph curve element
798      * @param {JXG.Coords} pnt Coords to add to the list of points
799      */
800     _insertPoint: function (curve, pnt, t, depth, limes) {
801         var last_is_real = !isNaN(this._lastScrCrds[1] + this._lastScrCrds[2]), // The last point was real
802             point_is_real = !isNaN(pnt[1] + pnt[2]), // New point is real point
803             cw = curve.board.canvasWidth,
804             ch = curve.board.canvasHeight,
805             p,
806             near = 0.8,
807             off = 500;
808 
809         if (Type.exists(limes)) {
810             this._insertLimesPoint(curve, pnt, t, depth, limes);
811             return;
812         }
813 
814         // Check if point has real coordinates and
815         // coordinates are not too far away from canvas.
816         point_is_real =
817             point_is_real &&
818             pnt[1] > -off &&
819             pnt[2] > -off &&
820             pnt[1] < cw + off &&
821             pnt[2] < ch + off;
822 
823         // Prevent two consecutive NaNs
824         if (!last_is_real && !point_is_real) {
825             return;
826         }
827 
828         // Prevent two consecutive points which are too close
829         if (
830             point_is_real &&
831             last_is_real &&
832             Math.abs(pnt[1] - this._lastScrCrds[1]) < near &&
833             Math.abs(pnt[2] - this._lastScrCrds[2]) < near
834         ) {
835             return;
836         }
837 
838         // Prevent two consecutive points at infinity (either direction)
839         if (
840             (Math.abs(pnt[1]) === Infinity && Math.abs(this._lastUsrCrds[1]) === Infinity) ||
841             (Math.abs(pnt[2]) === Infinity && Math.abs(this._lastUsrCrds[2]) === Infinity)
842         ) {
843             return;
844         }
845 
846         //console.log("add", t, pnt.usrCoords, depth)
847         // Add regular point
848         p = new Coords(Const.COORDS_BY_SCREEN, pnt, curve.board);
849         p._t = t;
850         curve.points.push(p);
851         this._lastScrCrds = p.copy("scrCoords");
852         this._lastUsrCrds = p.copy("usrCoords");
853     },
854 
855     /**
856      * Compute distances in screen coordinates between the points ab,
857      * ac, cb, and cd, where d = (a + b)/2.
858      * cd is used for the smoothness test, ab, ac, cb are used to detect jumps, cusps and poles.
859      *
860      * @private
861      * @param {Array} a Screen coordinates of the left interval bound
862      * @param {Array} b Screen coordinates of the right interval bound
863      * @param {Array} c Screen coordinates of the bisection point at (ta + tb) / 2
864      * @returns {Array} array of distances in screen coordinates between: ab, ac, cb, and cd.
865      */
866     _triangleDists: function (a, b, c) {
867         var d, d_ab, d_ac, d_cb, d_cd;
868 
869         d = [a[0] * b[0], (a[1] + b[1]) * 0.5, (a[2] + b[2]) * 0.5];
870 
871         d_ab = Geometry.distance(a, b, 3);
872         d_ac = Geometry.distance(a, c, 3);
873         d_cb = Geometry.distance(c, b, 3);
874         d_cd = Geometry.distance(c, d, 3);
875 
876         return [d_ab, d_ac, d_cb, d_cd];
877     },
878 
879     /**
880      * Test if the function is undefined on an interval:
881      * If the interval borders a and b are undefined, 20 random values
882      * are tested if they are undefined, too.
883      * Only if all values are undefined, we declare the function to be undefined in this interval.
884      *
885      * @private
886      * @param {JXG.Curve} curve JSXGraph curve element
887      * @param {Array} a Screen coordinates of the left interval bound
888      * @param {Number} ta Parameter which evaluates to a, i.e. [1, X(ta), Y(ta)] = a in screen coordinates
889      * @param {Array} b Screen coordinates of the right interval bound
890      * @param {Number} tb Parameter which evaluates to b, i.e. [1, X(tb), Y(tb)] = b in screen coordinates
891      */
892     _isUndefined: function (curve, a, ta, b, tb) {
893         var t, i, pnt;
894 
895         if (!isNaN(a[1] + a[2]) || !isNaN(b[1] + b[2])) {
896             return false;
897         }
898 
899         pnt = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false);
900 
901         for (i = 0; i < 20; ++i) {
902             t = ta + Math.random() * (tb - ta);
903             pnt.setCoordinates(
904                 Const.COORDS_BY_USER,
905                 [curve.X(t, true), curve.Y(t, true)],
906                 false
907             );
908             if (!isNaN(pnt.scrCoords[0] + pnt.scrCoords[1] + pnt.scrCoords[2])) {
909                 return false;
910             }
911         }
912 
913         return true;
914     },
915 
916     /**
917      * Decide if a path segment is too far from the canvas that we do not need to draw it.
918      * @private
919      * @param  {Array}  a  Screen coordinates of the start point of the segment
920      * @param  {Array}  ta Curve parameter of a  (unused).
921      * @param  {Array}  b  Screen coordinates of the end point of the segment
922      * @param  {Array}  tb Curve parameter of b (unused).
923      * @param  {JXG.Board} board
924      * @returns {Boolean}   True if the segment is too far away from the canvas, false otherwise.
925      */
926     _isOutside: function (a, ta, b, tb, board) {
927         var off = 500,
928             cw = board.canvasWidth,
929             ch = board.canvasHeight;
930 
931         return !!(
932             (a[1] < -off && b[1] < -off) ||
933             (a[2] < -off && b[2] < -off) ||
934             (a[1] > cw + off && b[1] > cw + off) ||
935             (a[2] > ch + off && b[2] > ch + off)
936         );
937     },
938 
939     /**
940      * Decide if a point of a curve is too far from the canvas that we do not need to draw it.
941      * @private
942      * @param {Array}  a  Screen coordinates of the point
943      * @param {JXG.Board} board
944      * @returns {Boolean}  True if the point is too far away from the canvas, false otherwise.
945      */
946     _isOutsidePoint: function (a, board) {
947         var off = 500,
948             cw = board.canvasWidth,
949             ch = board.canvasHeight;
950 
951         return !!(a[1] < -off || a[2] < -off || a[1] > cw + off || a[2] > ch + off);
952     },
953 
954     /**
955      * For a curve c(t) defined on the interval [ta, tb] find the first point
956      * which is in the visible area of the board (plus some outside margin).
957      * <p>
958      * This method is necessary to restrict the recursive plotting algorithm
959      * {@link JXG.Curve._plotRecursive} to the visible area and not waste
960      * recursion to areas far outside of the visible area.
961      * <p>
962      * This method can also be used to find the last visible point
963      * by reversing the input parameters.
964      *
965      * @param {JXG.Curve} curve JSXGraph curve element
966      * @param  {Array}  ta Curve parameter of a.
967      * @param  {Array}  b  Screen coordinates of the end point of the segment (unused)
968      * @param  {Array}  tb Curve parameter of b
969      * @return {Array}  Array of length two containing the screen ccordinates of
970      * the starting point and the curve parameter at this point.
971      * @private
972      */
973     _findStartPoint: function (curve, a, ta, b, tb) {
974         // The code below is too unstable.
975         // E.g. [function(t) { return Math.pow(t, 2) * (t + 5) * Math.pow(t - 5, 2); }, -8, 8]
976         // Therefore, we return here.
977         return [a, ta];
978 
979         // var i,
980         //     delta,
981         //     tc,
982         //     td,
983         //     z,
984         //     isFound,
985         //     w2,
986         //     h2,
987         //     pnt = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
988         //     steps = 40,
989         //     eps = 0.01,
990         //     fnX1,
991         //     fnX2,
992         //     fnY1,
993         //     fnY2,
994         //     bbox = curve.board.getBoundingBox();
995 
996         // if (true || !this._isOutsidePoint(a, curve.board)) {
997         //     return [a, ta];
998         // }
999         // w2 = (bbox[2] - bbox[0]) * 0.3;
1000         // h2 = (bbox[1] - bbox[3]) * 0.3;
1001         // bbox[0] -= w2;
1002         // bbox[1] += h2;
1003         // bbox[2] += w2;
1004         // bbox[3] -= h2;
1005 
1006         // delta = (tb - ta) / steps;
1007         // tc = ta + delta;
1008         // isFound = false;
1009 
1010         // fnX1 = function (t) {
1011         //     return curve.X(t, true) - bbox[0];
1012         // };
1013         // fnY1 = function (t) {
1014         //     return curve.Y(t, true) - bbox[1];
1015         // };
1016         // fnX2 = function (t) {
1017         //     return curve.X(t, true) - bbox[2];
1018         // };
1019         // fnY2 = function (t) {
1020         //     return curve.Y(t, true) - bbox[3];
1021         // };
1022         // for (i = 0; i < steps; ++i) {
1023         //     // Left border
1024         //     z = bbox[0];
1025         //     td = Numerics.root(fnX1, [tc - delta, tc], curve);
1026         //     // td = Numerics.fzero(fnX1, [tc - delta, tc], this);
1027         //     // console.log("A", tc - delta, tc, td, Math.abs(this.X(td, true) - z));
1028         //     if (Math.abs(curve.X(td, true) - z) < eps) {
1029         //         //} * Math.abs(z)) {
1030         //         isFound = true;
1031         //         break;
1032         //     }
1033         //     // Top border
1034         //     z = bbox[1];
1035         //     td = Numerics.root(fnY1, [tc - delta, tc], curve);
1036         //     // td = Numerics.fzero(fnY1, [tc - delta, tc], this);
1037         //     // console.log("B", tc - delta, tc, td, Math.abs(this.Y(td, true) - z));
1038         //     if (Math.abs(curve.Y(td, true) - z) < eps) {
1039         //         // * Math.abs(z)) {
1040         //         isFound = true;
1041         //         break;
1042         //     }
1043         //     // Right border
1044         //     z = bbox[2];
1045         //     td = Numerics.root(fnX2, [tc - delta, tc], curve);
1046         //     // td = Numerics.fzero(fnX2, [tc - delta, tc], this);
1047         //     // console.log("C", tc - delta, tc, td, Math.abs(this.X(td, true) - z));
1048         //     if (Math.abs(curve.X(td, true) - z) < eps) {
1049         //         // * Math.abs(z)) {
1050         //         isFound = true;
1051         //         break;
1052         //     }
1053         //     // Bottom border
1054         //     z = bbox[3];
1055         //     td = Numerics.root(fnY2, [tc - delta, tc], curve);
1056         //     // td = Numerics.fzero(fnY2, [tc - delta, tc], this);
1057         //     // console.log("D", tc - delta, tc, td, Math.abs(this.Y(td, true) - z));
1058         //     if (Math.abs(curve.Y(td, true) - z) < eps) {
1059         //         // * Math.abs(z)) {
1060         //         isFound = true;
1061         //         break;
1062         //     }
1063         //     tc += delta;
1064         // }
1065         // if (isFound) {
1066         //     pnt.setCoordinates(
1067         //         Const.COORDS_BY_USER,
1068         //         [curve.X(td, true), curve.Y(td, true)],
1069         //         false
1070         //     );
1071         //     return [pnt.scrCoords, td];
1072         // }
1073         // console.log("TODO _findStartPoint", curve.Y.toString(), tc);
1074         // pnt.setCoordinates(Const.COORDS_BY_USER, [curve.X(ta, true), curve.Y(ta, true)], false);
1075         // return [pnt.scrCoords, ta];
1076     },
1077 
1078     /**
1079      * Investigate a function term at the bounds of intervals where
1080      * the function is not defined, e.g. log(x) at x = 0.
1081      *
1082      * c is inbetween a and b
1083      *
1084      * @param {JXG.Curve} curve JSXGraph curve element
1085      * @param {Array} a Screen coordinates of the left interval bound
1086      * @param {Array} b Screen coordinates of the right interval bound
1087      * @param {Array} c Screen coordinates of the bisection point at (ta + tb) / 2
1088      * @param {Number} ta Parameter which evaluates to a, i.e. [1, X(ta), Y(ta)] = a in screen coordinates
1089      * @param {Number} tb Parameter which evaluates to b, i.e. [1, X(tb), Y(tb)] = b in screen coordinates
1090      * @param {Number} tc (ta + tb) / 2 = tc. Parameter which evaluates to b, i.e. [1, X(tc), Y(tc)] = c in screen coordinates
1091      * @param {Number} depth Actual recursion depth. The recursion stops if depth is equal to 0.
1092      * @returns {JXG.Boolean} true if the point is inserted and the recursion should stop, false otherwise.
1093      *
1094      * @private
1095      */
1096     _getBorderPos: function (curve, ta, a, tc, c, tb, b) {
1097         var t, pnt, p, j,
1098             max_it = 30,
1099             is_undef = false,
1100             t_good, t_bad;
1101 
1102         pnt = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false);
1103         j = 0;
1104         // Bisect a, b and c until the point t_real is inside of the definition interval
1105         // and as close as possible at the boundary.
1106         // (t_real2 is/was the second closest point).
1107         // There are four cases:
1108         //  a  |  c  |  b
1109         // ---------------
1110         // inf | R   | R
1111         // R   | R   | inf
1112         // inf | inf | R
1113         // R   | inf | inf
1114         //
1115         if (isNaN(a[1] + a[2]) && !isNaN(c[1] + c[2])) {
1116             t_bad = ta;
1117             t_good = tc;
1118         } else if (isNaN(b[1] + b[2]) && !isNaN(c[1] + c[2])) {
1119             t_bad = tb;
1120             t_good = tc;
1121         } else if (isNaN(c[1] + c[2]) && !isNaN(b[1] + b[2])) {
1122             t_bad = tc;
1123             t_good = tb;
1124         } else if (isNaN(c[1] + c[2]) && !isNaN(a[1] + a[2])) {
1125             t_bad = tc;
1126             t_good = ta;
1127         } else {
1128             return false;
1129         }
1130         do {
1131             t = 0.5 * (t_good + t_bad);
1132             pnt.setCoordinates(
1133                 Const.COORDS_BY_USER,
1134                 [curve.X(t, true), curve.Y(t, true)],
1135                 false
1136             );
1137             p = pnt.usrCoords;
1138             is_undef = isNaN(p[1] + p[2]);
1139             if (is_undef) {
1140                 t_bad = t;
1141             } else {
1142                 t_good = t;
1143             }
1144             ++j;
1145         } while (j < max_it && Math.abs(t_good - t_bad) > Mat.eps);
1146         return t;
1147     },
1148 
1149     /**
1150      *
1151      * @param {JXG.Curve} curve JSXGraph curve element
1152      * @param {Number} ta
1153      * @param {Number} tb
1154      */
1155     _getCuspPos: function (curve, ta, tb) {
1156         var a = [curve.X(ta, true), curve.Y(ta, true)],
1157             b = [curve.X(tb, true), curve.Y(tb, true)],
1158             max_func = function (t) {
1159                 var c = [curve.X(t, true), curve.Y(t, true)];
1160                 return -(
1161                     Mat.hypot(a[0] - c[0], a[1] - c[1]) +
1162                     Mat.hypot(b[0] - c[0], b[1] - c[1])
1163                 );
1164             };
1165 
1166         return Numerics.fminbr(max_func, [ta, tb], curve);
1167     },
1168 
1169     /**
1170      *
1171      * @param {JXG.Curve} curve JSXGraph curve element
1172      * @param {Number} ta
1173      * @param {Number} tb
1174      */
1175     _getJumpPos: function (curve, ta, tb) {
1176         var max_func = function (t) {
1177             var e = Mat.eps * Mat.eps,
1178                 c1 = [curve.X(t, true), curve.Y(t, true)],
1179                 c2 = [curve.X(t + e, true), curve.Y(t + e, true)];
1180             return -Math.abs((c2[1] - c1[1]) / (c2[0] - c1[0]));
1181         };
1182 
1183         return Numerics.fminbr(max_func, [ta, tb], curve);
1184     },
1185 
1186     /**
1187      *
1188      * @param {JXG.Curve} curve JSXGraph curve element
1189      * @param {Number} t
1190      * @private
1191      */
1192     _getLimits: function (curve, t) {
1193         var res,
1194             step = 2 / (curve.maxX() - curve.minX()),
1195             x_l,
1196             x_r,
1197             y_l,
1198             y_r;
1199 
1200         // From left
1201         res = Extrapolate.limit(t, -step, curve.X);
1202         x_l = res[0];
1203         if (res[1] === "infinite") {
1204             x_l = Math.sign(x_l) * Infinity;
1205         }
1206 
1207         res = Extrapolate.limit(t, -step, curve.Y);
1208         y_l = res[0];
1209         if (res[1] === "infinite") {
1210             y_l = Math.sign(y_l) * Infinity;
1211         }
1212 
1213         // From right
1214         res = Extrapolate.limit(t, step, curve.X);
1215         x_r = res[0];
1216         if (res[1] === "infinite") {
1217             x_r = Math.sign(x_r) * Infinity;
1218         }
1219 
1220         res = Extrapolate.limit(t, step, curve.Y);
1221         y_r = res[0];
1222         if (res[1] === "infinite") {
1223             y_r = Math.sign(y_r) * Infinity;
1224         }
1225 
1226         return {
1227             left_x: x_l,
1228             left_y: y_l,
1229             right_x: x_r,
1230             right_y: y_r,
1231             t: t
1232         };
1233     },
1234 
1235     /**
1236      *
1237      * @param {JXG.Curve} curve JSXGraph curve element
1238      * @param {Array} a
1239      * @param {Number} tc
1240      * @param {Array} c
1241      * @param {Number} tb
1242      * @param {Array} b
1243      * @param {String} may_be_special
1244      * @param {Number} depth
1245      * @private
1246      */
1247     _getLimes: function (curve, ta, a, tc, c, tb, b, may_be_special, depth) {
1248         var t;
1249 
1250         if (may_be_special === "border") {
1251             t = this._getBorderPos(curve, ta, a, tc, c, tb, b);
1252         } else if (may_be_special === "cusp") {
1253             t = this._getCuspPos(curve, ta, tb);
1254         } else if (may_be_special === "jump") {
1255             t = this._getJumpPos(curve, ta, tb);
1256         }
1257         return this._getLimits(curve, t);
1258     },
1259 
1260     /**
1261      * Recursive interval bisection algorithm for curve plotting.
1262      * Used in {@link JXG.Curve.updateParametricCurve}.
1263      * @private
1264      * @param {JXG.Curve} curve JSXGraph curve element
1265      * @param {Array} a Screen coordinates of the left interval bound
1266      * @param {Number} ta Parameter which evaluates to a, i.e. [1, X(ta), Y(ta)] = a in screen coordinates
1267      * @param {Array} b Screen coordinates of the right interval bound
1268      * @param {Number} tb Parameter which evaluates to b, i.e. [1, X(tb), Y(tb)] = b in screen coordinates
1269      * @param {Number} depth Actual recursion depth. The recursion stops if depth is equal to 0.
1270      * @param {Number} delta If the distance of the bisection point at (ta + tb) / 2 from the point (a + b) / 2 is less then delta,
1271      *                 the segment [a,b] is regarded as straight line.
1272      * @returns {JXG.Curve} Reference to the curve object.
1273      */
1274     _plotNonRecursive: function (curve, a, ta, b, tb, d) {
1275         var tc,
1276             c,
1277             ds,
1278             mindepth = 0,
1279             limes = null,
1280             a_nan,
1281             b_nan,
1282             isSmooth = false,
1283             may_be_special = "",
1284             x,
1285             y,
1286             oc,
1287             depth,
1288             ds0,
1289             stack = [],
1290             stack_length = 0,
1291             item;
1292 
1293         oc = curve.board.origin.scrCoords;
1294         stack[stack_length++] = [a, ta, b, tb, d, Infinity];
1295         while (stack_length > 0) {
1296             // item = stack.pop();
1297             item = stack[--stack_length];
1298             a = item[0];
1299             ta = item[1];
1300             b = item[2];
1301             tb = item[3];
1302             depth = item[4];
1303             ds0 = item[5];
1304 
1305             isSmooth = false;
1306             may_be_special = "";
1307             limes = null;
1308             //console.log(stack.length, item)
1309 
1310             if (curve.points.length > 65536) {
1311                 return;
1312             }
1313 
1314             if (depth < this.nanLevel) {
1315                 // Test if the function is undefined in the whole interval [ta, tb]
1316                 if (this._isUndefined(curve, a, ta, b, tb)) {
1317                     continue;
1318                 }
1319                 // Test if the graph is far outside the visible are for the interval [ta, tb]
1320                 if (this._isOutside(a, ta, b, tb, curve.board)) {
1321                     continue;
1322                 }
1323             }
1324 
1325             tc = (ta + tb) * 0.5;
1326 
1327             // Screen coordinates of point at tc
1328             x = curve.X(tc, true);
1329             y = curve.Y(tc, true);
1330             c = [1, oc[1] + x * curve.board.unitX, oc[2] - y * curve.board.unitY];
1331             ds = this._triangleDists(a, b, c); // returns [d_ab, d_ac, d_cb, d_cd]
1332 
1333             a_nan = isNaN(a[1] + a[2]);
1334             b_nan = isNaN(b[1] + b[2]);
1335             if ((a_nan && !b_nan) || (!a_nan && b_nan)) {
1336                 may_be_special = "border";
1337             } else if (
1338                 ds[0] > 0.66 * ds0 ||
1339                 ds[0] < this.cusp_threshold * (ds[1] + ds[2]) ||
1340                 ds[1] > 5 * ds[2] ||
1341                 ds[2] > 5 * ds[1]
1342             ) {
1343                 may_be_special = "cusp";
1344             } else if (
1345                 ds[2] > this.jump_threshold * ds[0] ||
1346                 ds[1] > this.jump_threshold * ds[0] ||
1347                 ds[0] === Infinity ||
1348                 ds[1] === Infinity ||
1349                 ds[2] === Infinity
1350             ) {
1351                 may_be_special = "jump";
1352             }
1353             isSmooth =
1354                 may_be_special === "" &&
1355                 depth < this.smoothLevel &&
1356                 ds[3] < this.smooth_threshold;
1357 
1358             if (depth < this.testLevel && !isSmooth) {
1359                 if (may_be_special === "") {
1360                     isSmooth = true;
1361                 } else {
1362                     limes = this._getLimes(curve, ta, a, tc, c, tb, b, may_be_special, depth);
1363                 }
1364             }
1365 
1366             if (limes !== null) {
1367                 c = [1, NaN, NaN];
1368                 this._insertPoint(curve, c, tc, depth, limes);
1369             } else if (depth <= mindepth || isSmooth) {
1370                 this._insertPoint(curve, c, tc, depth, null);
1371             } else {
1372                 stack[stack_length++] = [c, tc, b, tb, depth - 1, ds[0]];
1373                 stack[stack_length++] = [a, ta, c, tc, depth - 1, ds[0]];
1374             }
1375         }
1376 
1377         return this;
1378     },
1379 
1380     /**
1381      * Updates the data points of a parametric curve. This version is used if {@link JXG.Curve#plotVersion} is <tt>3</tt>.
1382      * This is an experimental plot version, <b>not recommended</b> to be used.
1383      * @param {JXG.Curve} curve JSXGraph curve element
1384      * @param {Number} mi Left bound of curve
1385      * @param {Number} ma Right bound of curve
1386      * @returns {JXG.Curve} Reference to the curve object.
1387      */
1388     updateParametricCurve_v3: function (curve, mi, ma) {
1389         var ta,
1390             tb,
1391             a,
1392             b,
1393             suspendUpdate = false,
1394             pa = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
1395             pb = new Coords(Const.COORDS_BY_USER, [0, 0], curve.board, false),
1396             depth,
1397             w2, // h2,
1398             bbox,
1399             ret_arr;
1400 
1401         // console.log("-----------------------------------------------------------");
1402         // console.time("plot");
1403         if (curve.board.updateQuality === curve.board.BOARD_QUALITY_LOW) {
1404             depth = curve.evalVisProp('recursiondepthlow') || 14;
1405         } else {
1406             depth = curve.evalVisProp('recursiondepthhigh') || 17;
1407         }
1408 
1409         // smoothLevel has to be small for graphs in a huge interval.
1410         this.smoothLevel = 7; //depth - 10;
1411         this.nanLevel = depth - 4;
1412         this.testLevel = 4;
1413         this.cusp_threshold = 0.5;
1414         this.jump_threshold = 0.99;
1415         this.smooth_threshold = 2;
1416 
1417         curve.points = [];
1418 
1419         if (curve.xterm === "x") {
1420             // For function graphs we can restrict the plot interval
1421             // to the visible area +plus margin
1422             bbox = curve.board.getBoundingBox();
1423             w2 = (bbox[2] - bbox[0]) * 0.3;
1424             //h2 = (bbox[1] - bbox[3]) * 0.3;
1425             ta = Math.max(mi, bbox[0] - w2);
1426             tb = Math.min(ma, bbox[2] + w2);
1427         } else {
1428             ta = mi;
1429             tb = ma;
1430         }
1431         pa.setCoordinates(
1432             Const.COORDS_BY_USER,
1433             [curve.X(ta, suspendUpdate), curve.Y(ta, suspendUpdate)],
1434             false
1435         );
1436 
1437         // The first function calls of X() and Y() are done. We can now
1438         // switch `suspendUpdate` on. If supported by the functions, this
1439         // avoids for the rest of the plotting algorithm, evaluation of any
1440         // parent elements.
1441         suspendUpdate = true;
1442 
1443         pb.setCoordinates(
1444             Const.COORDS_BY_USER,
1445             [curve.X(tb, suspendUpdate), curve.Y(tb, suspendUpdate)],
1446             false
1447         );
1448 
1449         // Find start and end points of the visible area (plus a certain margin)
1450         ret_arr = this._findStartPoint(curve, pa.scrCoords, ta, pb.scrCoords, tb);
1451         pa.setCoordinates(Const.COORDS_BY_SCREEN, ret_arr[0], false);
1452         ta = ret_arr[1];
1453         ret_arr = this._findStartPoint(curve, pb.scrCoords, tb, pa.scrCoords, ta);
1454         pb.setCoordinates(Const.COORDS_BY_SCREEN, ret_arr[0], false);
1455         tb = ret_arr[1];
1456 
1457         // Save the visible area.
1458         // This can be used in Curve.hasPoint().
1459         this._visibleArea = [ta, tb];
1460 
1461         // Start recursive plotting algorithm
1462         a = pa.copy("scrCoords");
1463         b = pb.copy("scrCoords");
1464         pa._t = ta;
1465         curve.points.push(pa);
1466         this._lastScrCrds = pa.copy("scrCoords"); // Used in _insertPoint
1467         this._lastUsrCrds = pa.copy("usrCoords"); // Used in _insertPoint
1468 
1469         this._plotNonRecursive(curve, a, ta, b, tb, depth);
1470 
1471         pb._t = tb;
1472         curve.points.push(pb);
1473 
1474         curve.numberPoints = curve.points.length;
1475         // console.timeEnd("plot");
1476         // console.log("number of points:", this.numberPoints);
1477 
1478         return curve;
1479     },
1480 
1481     //----------------------------------------------------------------------
1482     // Plot algorithm v4
1483     //----------------------------------------------------------------------
1484 
1485     /**
1486      * TODO
1487      * @param {Array} vec
1488      * @param {Number} le
1489      * @param {Number} level
1490      * @returns Object
1491      * @private
1492      */
1493     _criticalInterval: function (vec, le, level) {
1494         var i,
1495             j,
1496             le1,
1497             med,
1498             sgn,
1499             sgnChange,
1500             isGroup = false,
1501             abs_vec,
1502             last = -Infinity,
1503             very_small = false,
1504             smooth = false,
1505             group = 0,
1506             groups = [],
1507             types = [],
1508             positions = [];
1509 
1510         abs_vec = Statistics.abs(vec);
1511         med = Statistics.median(abs_vec);
1512 
1513         if (med < 1.0e-7) {
1514             med = 1.0e-7;
1515             very_small = true;
1516         } else {
1517             med *= this.criticalThreshold;
1518         }
1519 
1520         //console.log("Median", med);
1521         for (i = 0; i < le; i++) {
1522             // Start a group if not yet done and
1523             // add position to group
1524             if (abs_vec[i] > med /*&& abs_vec[i] > 0.01*/) {
1525                 positions.push({ i: i, v: vec[i], group: group });
1526                 last = i;
1527                 if (!isGroup) {
1528                     isGroup = true;
1529                 }
1530             } else {
1531                 if (isGroup && i > last + 4) {
1532                     // End the group
1533                     if (positions.length > 0) {
1534                         groups.push(positions.slice(0));
1535                     }
1536                     positions = [];
1537                     isGroup = false;
1538                     group++;
1539                 }
1540             }
1541         }
1542         if (isGroup) {
1543             if (positions.length > 1) {
1544                 groups.push(positions.slice(0));
1545             }
1546         }
1547 
1548         if (very_small && groups.length === 0) {
1549             smooth = true;
1550         }
1551 
1552         // Decide if there is a singular critical point
1553         // or if a whole interval is problematic.
1554         // The latter is the case if the differences have many sign changes.
1555         for (j = 0; j < groups.length; j++) {
1556             types[j] = "point";
1557             le1 = groups[j].length;
1558             if (le1 < 64) {
1559                 continue;
1560             }
1561             sgnChange = 0;
1562             sgn = Math.sign(groups[j][0].v);
1563             for (i = 1; i < le1; i++) {
1564                 if (Math.sign(groups[j][i].v) !== sgn) {
1565                     sgnChange++;
1566                     sgn = Math.sign(groups[j][i].v);
1567                 }
1568             }
1569             if (sgnChange * 6 > le1) {
1570                 types[j] = "interval";
1571             }
1572         }
1573 
1574         return { smooth: smooth, groups: groups, types: types };
1575     },
1576 
1577     Component: function () {
1578         this.left_isNaN = false;
1579         this.right_isNaN = false;
1580         this.left_t = null;
1581         this.right_t = null;
1582         this.t_values = [];
1583         this.x_values = [];
1584         this.y_values = [];
1585         this.len = 0;
1586     },
1587 
1588     findComponents: function (curve, mi, ma, steps) {
1589         var i, t, h,
1590             x, y,
1591             components = [],
1592             comp,
1593             comp_nr = 0,
1594             cnt = 0,
1595             cntNaNs = 0,
1596             comp_started = false,
1597             suspended = false;
1598 
1599         h = (ma - mi) / steps;
1600         components[comp_nr] = new this.Component();
1601         comp = components[comp_nr];
1602 
1603         for (i = 0, t = mi; i <= steps; i++, t += h) {
1604             x = curve.X(t, suspended);
1605             y = curve.Y(t, suspended);
1606 
1607             if (isNaN(x) || isNaN(y)) {
1608                 cntNaNs++;
1609                 // Wait for - at least - two consecutive NaNs
1610                 // This avoids starting a new component if
1611                 // the function value has infinity as intermediate value.
1612                 if (cntNaNs > 1 && comp_started) {
1613                     // Finalize a component
1614                     comp.right_isNaN = true;
1615                     comp.right_t = t - h;
1616                     comp.len = cnt;
1617 
1618                     // Prepare a new component
1619                     comp_started = false;
1620                     comp_nr++;
1621                     components[comp_nr] = new this.Component();
1622                     comp = components[comp_nr];
1623                     cntNaNs = 0;
1624                 }
1625             } else {
1626                 // Now there is a non-NaN entry.
1627                 if (!comp_started) {
1628                     // Start the component
1629                     comp_started = true;
1630                     cnt = 0;
1631                     if (cntNaNs > 0) {
1632                         comp.left_t = t - h;
1633                         comp.left_isNaN = true;
1634                     }
1635                 }
1636                 cntNaNs = 0;
1637                 // Add the value to the component
1638                 comp.t_values[cnt] = t;
1639                 comp.x_values[cnt] = x;
1640                 comp.y_values[cnt] = y;
1641                 cnt++;
1642             }
1643             if (i === 0) {
1644                 suspended = true;
1645             }
1646         }
1647         if (comp_started) {
1648             comp.len = cnt;
1649         } else {
1650             components.pop();
1651         }
1652 
1653         return components;
1654     },
1655 
1656     getPointType: function (curve, pos, t_approx, t_values, x_table, y_table, len) {
1657         var x_values = x_table[0],
1658             y_values = y_table[0],
1659             full_len = t_values.length,
1660             result = {
1661                 idx: pos,
1662                 t: t_approx, //t_values[pos],
1663                 x: x_values[pos],
1664                 y: y_values[pos],
1665                 type: "other"
1666             };
1667 
1668         if (pos < 5) {
1669             result.type = "borderleft";
1670             result.idx = 0;
1671             result.t = t_values[0];
1672             result.x = x_values[0];
1673             result.y = y_values[0];
1674 
1675             // console.log('Border left', result.t);
1676             return result;
1677         }
1678         if (pos > len - 6) {
1679             result.type = "borderright";
1680             result.idx = full_len - 1;
1681             result.t = t_values[full_len - 1];
1682             result.x = x_values[full_len - 1];
1683             result.y = y_values[full_len - 1];
1684 
1685             // console.log('Border right', result.t, full_len - 1);
1686             return result;
1687         }
1688 
1689         return result;
1690     },
1691 
1692     newtonApprox: function (idx, t, h, level, table) {
1693         var i,
1694             s = 0.0;
1695         for (i = level; i > 0; i--) {
1696             s = ((s + table[i][idx]) * (t - (i - 1) * h)) / i;
1697         }
1698         return s + table[0][idx];
1699     },
1700 
1701     // Thiele's interpolation formula,
1702     // https://en.wikipedia.org/wiki/Thiele%27s_interpolation_formula
1703     // unused
1704     thiele: function (t, recip, t_values, idx, degree) {
1705         var i,
1706             v = 0.0;
1707         for (i = degree; i > 1; i--) {
1708             v = (t - t_values[idx + i]) / (recip[i][idx + 1] - recip[i - 2][idx + 1] + v);
1709         }
1710         return recip[0][idx + 1] + (t - t_values[idx + 1]) / (recip[1][idx + 1] + v);
1711     },
1712 
1713     differenceMethodExperiments: function (component, curve) {
1714         var i,
1715             level,
1716             le,
1717             up,
1718             t_values = component.t_values,
1719             x_values = component.x_values,
1720             y_values = component.y_values,
1721             x_diffs = [],
1722             y_diffs = [],
1723             x_slopes = [],
1724             y_slopes = [],
1725             x_table = [],
1726             y_table = [],
1727             x_recip = [],
1728             y_recip = [],
1729             h,
1730             numerator,
1731             // x_med, y_med,
1732             foundCriticalPoint = 0,
1733             pos,
1734             ma,
1735             j,
1736             v,
1737             groups,
1738             criticalPoints = [];
1739 
1740         h = t_values[1] - t_values[0];
1741         x_table.push([]);
1742         y_table.push([]);
1743         x_recip.push([]);
1744         y_recip.push([]);
1745         le = y_values.length;
1746         for (i = 0; i < le; i++) {
1747             x_table[0][i] = x_values[i];
1748             y_table[0][i] = y_values[i];
1749             x_recip[0][i] = x_values[i];
1750             y_recip[0][i] = y_values[i];
1751         }
1752 
1753         x_table.push([]);
1754         y_table.push([]);
1755         x_recip.push([]);
1756         y_recip.push([]);
1757         numerator = h;
1758         le = y_values.length - 1;
1759         for (i = 0; i < le; i++) {
1760             x_diffs[i] = x_values[i + 1] - x_values[i];
1761             y_diffs[i] = y_values[i + 1] - y_values[i];
1762             x_slopes[i] = x_diffs[i];
1763             y_slopes[i] = y_diffs[i];
1764             x_table[1][i] = x_diffs[i];
1765             y_table[1][i] = y_diffs[i];
1766             x_recip[1][i] = numerator / x_diffs[i];
1767             y_recip[1][i] = numerator / y_diffs[i];
1768         }
1769         le--;
1770 
1771         up = Math.min(8, y_values.length - 1);
1772         for (level = 1; level < up; level++) {
1773             x_table.push([]);
1774             y_table.push([]);
1775             x_recip.push([]);
1776             y_recip.push([]);
1777             numerator *= h;
1778             for (i = 0; i < le; i++) {
1779                 x_diffs[i] = x_diffs[i + 1] - x_diffs[i];
1780                 y_diffs[i] = y_diffs[i + 1] - y_diffs[i];
1781                 x_table[level + 1][i] = x_diffs[i];
1782                 y_table[level + 1][i] = y_diffs[i];
1783                 x_recip[level + 1][i] =
1784                     numerator / (x_recip[level][i + 1] - x_recip[level][i]) +
1785                     x_recip[level - 1][i + 1];
1786                 y_recip[level + 1][i] =
1787                     numerator / (y_recip[level][i + 1] - y_recip[level][i]) +
1788                     y_recip[level - 1][i + 1];
1789             }
1790 
1791             // if (level == 1) {
1792             //     console.log("bends level=", level, y_diffs.toString());
1793             // }
1794 
1795             // Store point location which may be centered around
1796             // critical points.
1797             // If the level is suitable, step out of the loop.
1798             groups = this._criticalPoints(y_diffs, le, level);
1799             if (groups === false) {
1800                 // Its seems, the degree of the polynomial is equal to level
1801                 console.log("Polynomial of degree", level);
1802                 groups = [];
1803                 break;
1804             }
1805             if (groups.length > 0) {
1806                 foundCriticalPoint++;
1807                 if (foundCriticalPoint > 1 && level % 2 === 0) {
1808                     break;
1809                 }
1810             }
1811             le--;
1812         }
1813 
1814         // console.log("Last diffs", y_diffs, "level", level);
1815 
1816         // Analyze the groups which have been found.
1817         for (i = 0; i < groups.length; i++) {
1818             // console.log("Group", i, groups[i])
1819             // Identify the maximum difference, i.e. the center of the "problem"
1820             ma = -Infinity;
1821             for (j = 0; j < groups[i].length; j++) {
1822                 v = Math.abs(groups[i][j].v);
1823                 if (v > ma) {
1824                     ma = v;
1825                     pos = j;
1826                 }
1827             }
1828             pos = Math.floor(groups[i][pos].i + level / 2);
1829             // Analyze the critical point
1830             criticalPoints.push(
1831                 this.getPointType(
1832                     curve,
1833                     pos,
1834                     t_values,
1835                     x_values,
1836                     y_values,
1837                     x_slopes,
1838                     y_slopes,
1839                     le + 1
1840                 )
1841             );
1842         }
1843 
1844         return [criticalPoints, x_table, y_table, x_recip, y_recip];
1845     },
1846 
1847     getCenterOfCriticalInterval: function (group, degree, t_values) {
1848         var ma,
1849             j,
1850             pos,
1851             v,
1852             num = 0.0,
1853             den = 0.0,
1854             h = t_values[1] - t_values[0],
1855             pos_mean,
1856             range = [];
1857 
1858         // Identify the maximum difference, i.e. the center of the "problem"
1859         // If there are several equal maxima, store the positions
1860         // in the array range and determine the center of the array.
1861 
1862         ma = -Infinity;
1863         range = [];
1864         for (j = 0; j < group.length; j++) {
1865             v = Math.abs(group[j].v);
1866             if (v > ma) {
1867                 range = [j];
1868                 ma = v;
1869                 pos = j;
1870             } else if (ma === v) {
1871                 range.push(j);
1872             }
1873         }
1874         if (range.length > 0) {
1875             pos_mean =
1876                 range.reduce(function (total, val) {
1877                     return total + val;
1878                 }, 0) / range.length;
1879             pos = Math.floor(pos_mean);
1880             pos_mean += group[0].i;
1881         }
1882 
1883         if (ma < Infinity) {
1884             for (j = 0; j < group.length; j++) {
1885                 num += Math.abs(group[j].v) * group[j].i;
1886                 den += Math.abs(group[j].v);
1887             }
1888             pos_mean = num / den;
1889         }
1890         pos_mean += degree / 2;
1891         return [
1892             group[pos].i + degree / 2,
1893             pos_mean,
1894             t_values[Math.floor(pos_mean)] + h * (pos_mean - Math.floor(pos_mean))
1895         ];
1896     },
1897 
1898     differenceMethod: function (component, curve) {
1899         var i,
1900             level,
1901             le,
1902             up,
1903             t_values = component.t_values,
1904             x_values = component.x_values,
1905             y_values = component.y_values,
1906             x_table = [],
1907             y_table = [],
1908             foundCriticalPoint = 0,
1909             degree_x = -1,
1910             degree_y = -1,
1911             pos,
1912             res,
1913             res_x,
1914             res_y,
1915             t_approx,
1916             groups = [],
1917             types,
1918             criticalPoints = [];
1919 
1920         le = y_values.length;
1921         // x_table.push([]);
1922         // y_table.push([]);
1923         // for (i = 0; i < le; i++) {
1924         //     x_table[0][i] = x_values[i];
1925         //     y_table[0][i] = y_values[i];
1926         // }
1927         x_table.push(new Float64Array(x_values));
1928         y_table.push(new Float64Array(y_values));
1929 
1930         le--;
1931         up = Math.min(12, le);
1932         for (level = 0; level < up; level++) {
1933             // Old style method:
1934             // x_table.push([]);
1935             // y_table.push([]);
1936             // for (i = 0; i < le; i++) {
1937             //     x_table[level + 1][i] = x_table[level][i + 1] - x_table[level][i];
1938             //     y_table[level + 1][i] = y_table[level][i + 1] - y_table[level][i];
1939             // }
1940             // New method:
1941             x_table.push(new Float64Array(le));
1942             y_table.push(new Float64Array(le));
1943             x_table[level + 1] = x_table[level].map(function (v, idx, arr) {
1944                 return arr[idx + 1] - v;
1945             });
1946             y_table[level + 1] = y_table[level].map(function (v, idx, arr) {
1947                 return arr[idx + 1] - v;
1948             });
1949 
1950             // Store point location which may be centered around critical points.
1951             // If the level is suitable, step out of the loop.
1952             res_y = this._criticalInterval(y_table[level + 1], le, level);
1953             if (res_y.smooth === true) {
1954                 // Its seems, the degree of the polynomial is equal to level
1955                 // If the values in level + 1 are zero, it might be a polynomial of degree level.
1956                 // Seems to work numerically stable until degree 6.
1957                 degree_y = level;
1958                 groups = [];
1959             }
1960             res_x = this._criticalInterval(x_table[level + 1], le, level);
1961             if (degree_x === -1 && res_x.smooth === true) {
1962                 // Its seems, the degree of the polynomial is equal to level
1963                 // If the values in level + 1 are zero, it might be a polynomial of degree level.
1964                 // Seems to work numerically stable until degree 6.
1965                 degree_x = level;
1966             }
1967             if (degree_y >= 0) {
1968                 break;
1969             }
1970 
1971             if (res_y.groups.length > 0) {
1972                 foundCriticalPoint++;
1973                 if (foundCriticalPoint > 2 && (level + 1) % 2 === 0) {
1974                     groups = res_y.groups;
1975                     types = res_y.types;
1976                     break;
1977                 }
1978             }
1979             le--;
1980         }
1981 
1982         // console.log("Last diffs", y_table[Math.min(level + 1, up)], "level", level + 1);
1983         // Analyze the groups which have been found.
1984         for (i = 0; i < groups.length; i++) {
1985             if (types[i] === "interval") {
1986                 continue;
1987             }
1988             // console.log("Group", i, groups[i], types[i], level + 1)
1989             res = this.getCenterOfCriticalInterval(groups[i], level + 1, t_values);
1990             pos = res_y[0];
1991             pos = Math.floor(res[1]);
1992             t_approx = res[2];
1993             // console.log("Critical points:", groups, res, pos)
1994 
1995             // Analyze the type of the critical point
1996             // Result is of type 'borderleft', borderright', 'other'
1997             criticalPoints.push(
1998                 this.getPointType(curve, pos, t_approx, t_values, x_table, y_table, le + 1)
1999             );
2000         }
2001 
2002         // if (level === up) {
2003         //     console.log("No convergence!");
2004         // } else {
2005         //     console.log("Convergence level", level);
2006         // }
2007         return [criticalPoints, x_table, y_table, degree_x, degree_y];
2008     },
2009 
2010     _insertPoint_v4: function (curve, crds, t, doLog) {
2011         var p,
2012             prev = null,
2013             x,
2014             y,
2015             near = 0.8;
2016 
2017         if (curve.points.length > 0) {
2018             prev = curve.points[curve.points.length - 1].scrCoords;
2019         }
2020 
2021         // Add regular point
2022         p = new Coords(Const.COORDS_BY_USER, crds, curve.board);
2023 
2024         if (prev !== null) {
2025             x = p.scrCoords[1] - prev[1];
2026             y = p.scrCoords[2] - prev[2];
2027             if (x * x + y * y < near * near) {
2028                 // Math.abs(p.scrCoords[1] - prev[1]) < near &&
2029                 // Math.abs(p.scrCoords[2] - prev[2]) < near) {
2030                 return;
2031             }
2032         }
2033 
2034         p._t = t;
2035         curve.points.push(p);
2036     },
2037 
2038     getInterval: function (curve, ta, tb) {
2039         var t_int,
2040             // x_int,
2041             y_int;
2042 
2043         //console.log('critical point', ta, tb);
2044         IntervalArithmetic.disable();
2045 
2046         t_int = IntervalArithmetic.Interval(ta, tb);
2047         curve.board.mathLib = IntervalArithmetic;
2048         curve.board.mathLibJXG = IntervalArithmetic;
2049         // x_int = curve.X(t_int, true);
2050         y_int = curve.Y(t_int, true);
2051         curve.board.mathLib = Math;
2052         curve.board.mathLibJXG = JXG.Math;
2053 
2054         //console.log(x_int, y_int);
2055         return y_int;
2056     },
2057 
2058     sign: function (v) {
2059         if (v < 0) {
2060             return -1;
2061         }
2062         if (v > 0) {
2063             return 1;
2064         }
2065         return 0;
2066     },
2067 
2068     handleBorder: function (curve, comp, group, x_table, y_table) {
2069         var idx = group.idx,
2070             t,
2071             t1,
2072             t2,
2073             size = 32,
2074             y_int,
2075             x,
2076             y,
2077             lo,
2078             hi,
2079             i,
2080             components2,
2081             le,
2082             h;
2083 
2084         // console.log("HandleBorder at t =", t_approx);
2085         // console.log("component:", comp)
2086         // console.log("Group:", group);
2087 
2088         h = comp.t_values[1] - comp.t_values[0];
2089         if (group.type === "borderleft") {
2090             t = comp.left_isNaN ? comp.left_t : group.t - h;
2091             t1 = t;
2092             t2 = t1 + h;
2093         } else if (group.type === "borderright") {
2094             t = comp.right_isNaN ? comp.right_t : group.t + h;
2095             t2 = t;
2096             t1 = t2 - h;
2097         } else {
2098             console.log("No bordercase!!!");
2099         }
2100 
2101         components2 = this.findComponents(curve, t1, t2, size);
2102         if (components2.length === 0) {
2103             return;
2104         }
2105         if (group.type === "borderleft") {
2106             t1 = components2[0].left_t;
2107             t2 = components2[0].t_values[0];
2108             h = components2[0].t_values[1] - components2[0].t_values[0];
2109             t1 = t1 === null ? t2 - h : t1;
2110             t = t1;
2111             y_int = this.getInterval(curve, t1, t2);
2112             if (Type.isObject(y_int)) {
2113                 lo = y_int.lo;
2114                 hi = y_int.hi;
2115 
2116                 x = curve.X(t, true);
2117                 y = y_table[1][idx] < 0 ? hi : lo;
2118                 this._insertPoint_v4(curve, [1, x, y], t);
2119             }
2120         }
2121 
2122         le = components2[0].t_values.length;
2123         for (i = 0; i < le; i++) {
2124             t = components2[0].t_values[i];
2125             x = components2[0].x_values[i];
2126             y = components2[0].y_values[i];
2127             this._insertPoint_v4(curve, [1, x, y], t);
2128         }
2129 
2130         if (group.type === "borderright") {
2131             t1 = components2[0].t_values[le - 1];
2132             t2 = components2[0].right_t;
2133             h = components2[0].t_values[1] - components2[0].t_values[0];
2134             t2 = t2 === null ? t1 + h : t2;
2135 
2136             t = t2;
2137             y_int = this.getInterval(curve, t1, t2);
2138             if (Type.isObject(y_int)) {
2139                 lo = y_int.lo;
2140                 hi = y_int.hi;
2141                 x = curve.X(t, true);
2142                 y = y_table[1][idx] > 0 ? hi : lo;
2143                 this._insertPoint_v4(curve, [1, x, y], t);
2144             }
2145         }
2146     },
2147 
2148     _seconditeration_v4: function (curve, comp, group, x_table, y_table) {
2149         var i, t1, t2, ret, components2, comp2, idx, groups2, g, x_table2, y_table2, start, le;
2150 
2151         // Look at two points, hopefully left and right from the critical point
2152         t1 = comp.t_values[group.idx - 2];
2153         t2 = comp.t_values[group.idx + 2];
2154         components2 = this.findComponents(curve, t1, t2, 64);
2155         for (idx = 0; idx < components2.length; idx++) {
2156             comp2 = components2[idx];
2157             ret = this.differenceMethod(comp2, curve);
2158             groups2 = ret[0];
2159             x_table2 = ret[1];
2160             y_table2 = ret[2];
2161             start = 0;
2162             for (g = 0; g <= groups2.length; g++) {
2163                 if (g === groups2.length) {
2164                     le = comp2.len;
2165                 } else {
2166                     le = groups2[g].idx;
2167                 }
2168 
2169                 // Insert all uncritical points until next critical point
2170                 for (i = start; i < le; i++) {
2171                     if (!isNaN(comp2.x_values[i]) && !isNaN(comp2.y_values[i])) {
2172                         this._insertPoint_v4(
2173                             curve,
2174                             [1, comp2.x_values[i], comp2.y_values[i]],
2175                             comp2.t_values[i]
2176                         );
2177                     }
2178                 }
2179                 // Handle next critical point
2180                 if (g < groups2.length) {
2181                     this.handleSingularity(curve, comp2, groups2[g], x_table2, y_table2);
2182                     start = groups2[g].idx + 1;
2183                 }
2184             }
2185             le = comp2.len;
2186             if (idx < components2.length - 1) {
2187                 this._insertPoint_v4(curve, [1, NaN, NaN], comp2.right_t);
2188             }
2189         }
2190         return this;
2191     },
2192 
2193     _recurse_v4: function (curve, t1, t2, x1, y1, x2, y2, level) {
2194         var tol = 2,
2195             t = (t1 + t2) * 0.5,
2196             x = curve.X(t, true),
2197             y = curve.Y(t, true),
2198             dx,
2199             dy;
2200 
2201         //console.log("Level", level)
2202         if (level === 0) {
2203             this._insertPoint_v4(curve, [1, NaN, NaN], t);
2204             return;
2205         }
2206         // console.log("R", t1, t2)
2207         dx = (x - x1) * curve.board.unitX;
2208         dy = (y - y1) * curve.board.unitY;
2209         // console.log("D1", Math.sqrt(dx * dx + dy * dy))
2210         if (Mat.hypot(dx, dy) > tol) {
2211             this._recurse_v4(curve, t1, t, x1, y1, x, y, level - 1);
2212         } else {
2213             this._insertPoint_v4(curve, [1, x, y], t);
2214         }
2215         dx = (x - x2) * curve.board.unitX;
2216         dy = (y - y2) * curve.board.unitY;
2217         // console.log("D2", Math.sqrt(dx * dx + dy * dy), x-x2, y-y2)
2218         if (Mat.hypot(dx, dy) > tol) {
2219             this._recurse_v4(curve, t, t2, x, y, x2, y2, level - 1);
2220         } else {
2221             this._insertPoint_v4(curve, [1, x, y], t);
2222         }
2223     },
2224 
2225     handleSingularity: function (curve, comp, group, x_table, y_table) {
2226         var idx = group.idx,
2227             t,
2228             t1,
2229             t2,
2230             y_int,
2231             i1,
2232             i2,
2233             x,
2234             // y,
2235             lo,
2236             hi,
2237             d_lft,
2238             d_rgt,
2239             d_thresh = 100,
2240             // d1,
2241             // d2,
2242             di1 = 5,
2243             di2 = 3;
2244 
2245         t = group.t;
2246         console.log("HandleSingularity at t =", t);
2247         // console.log(comp.t_values[idx - 1], comp.y_values[idx - 1], comp.t_values[idx + 1], comp.y_values[idx + 1]);
2248         // console.log(group);
2249 
2250         // Look at two points, hopefully left and right from the critical point
2251         t1 = comp.t_values[idx - di1];
2252         t2 = comp.t_values[idx + di1];
2253 
2254         y_int = this.getInterval(curve, t1, t2);
2255         if (Type.isObject(y_int)) {
2256             lo = y_int.lo;
2257             hi = y_int.hi;
2258         } else {
2259             if (y_table[0][idx - 1] < y_table[0][idx + 1]) {
2260                 lo = y_table[0][idx - 1];
2261                 hi = y_table[0][idx + 1];
2262             } else {
2263                 lo = y_table[0][idx + 1];
2264                 hi = y_table[0][idx - 1];
2265             }
2266         }
2267 
2268         x = curve.X(t, true);
2269 
2270         d_lft =
2271             (y_table[0][idx - di2] - y_table[0][idx - di1]) /
2272             (comp.t_values[idx - di2] - comp.t_values[idx - di1]);
2273         d_rgt =
2274             (y_table[0][idx + di2] - y_table[0][idx + di1]) /
2275             (comp.t_values[idx + di2] - comp.t_values[idx + di1]);
2276 
2277         console.log(":::", d_lft, d_rgt);
2278 
2279         //this._insertPoint_v4(curve, [1, NaN, NaN], 0);
2280 
2281         if (d_lft < -d_thresh) {
2282             // Left branch very steep downwards -> add the minimum
2283             this._insertPoint_v4(curve, [1, x, lo], t, true);
2284             if (d_rgt <= d_thresh) {
2285                 // Right branch not very steep upwards -> interrupt the curve
2286                 // I.e. it looks like -infty / (finite or infty) and not like -infty / -infty
2287                 this._insertPoint_v4(curve, [1, NaN, NaN], t);
2288             }
2289         } else if (d_lft > d_thresh) {
2290             // Left branch very steep upwards -> add the maximum
2291             this._insertPoint_v4(curve, [1, x, hi], t);
2292             if (d_rgt >= -d_thresh) {
2293                 // Right branch not very steep downwards -> interrupt the curve
2294                 // I.e. it looks like infty / (finite or -infty) and not like infty / infty
2295                 this._insertPoint_v4(curve, [1, NaN, NaN], t);
2296             }
2297         } else {
2298             if (lo === -Infinity) {
2299                 this._insertPoint_v4(curve, [1, x, lo], t, true);
2300                 this._insertPoint_v4(curve, [1, NaN, NaN], t);
2301             }
2302             if (hi === Infinity) {
2303                 this._insertPoint_v4(curve, [1, NaN, NaN], t);
2304                 this._insertPoint_v4(curve, [1, x, hi], t, true);
2305             }
2306 
2307             if (group.t < comp.t_values[idx]) {
2308                 i1 = idx - 1;
2309                 i2 = idx;
2310             } else {
2311                 i1 = idx;
2312                 i2 = idx + 1;
2313             }
2314             t1 = comp.t_values[i1];
2315             t2 = comp.t_values[i2];
2316             this._recurse_v4(
2317                 curve,
2318                 t1,
2319                 t2,
2320                 x_table[0][i1],
2321                 y_table[0][i1],
2322                 x_table[0][i2],
2323                 y_table[0][i2],
2324                 10
2325             );
2326 
2327             // x = (x_table[0][idx] - x_table[0][idx - 1]) * curve.board.unitX;
2328             // y = (y_table[0][idx] - y_table[0][idx - 1]) * curve.board.unitY;
2329             // d1 = Math.sqrt(x * x + y * y);
2330             // x = (x_table[0][idx + 1] - x_table[0][idx]) * curve.board.unitX;
2331             // y = (y_table[0][idx + 1] - y_table[0][idx]) * curve.board.unitY;
2332             // d2 = Math.sqrt(x * x + y * y);
2333 
2334             // console.log("end", t1, t2, t);
2335             // if (true || (d1 > 2 || d2 > 2)) {
2336 
2337             // console.log(d1, d2, y_table[0][idx])
2338             //                     // Finite jump
2339             //                     this._insertPoint_v4(curve, [1, NaN, NaN], t);
2340             //                 } else {
2341             //                     if (lo !== -Infinity && hi !== Infinity) {
2342             //                         // Critical point which can be ignored
2343             //                         this._insertPoint_v4(curve, [1, x_table[0][idx], y_table[0][idx]], comp.t_values[idx]);
2344             //                     } else {
2345             //                         if (lo === -Infinity) {
2346             //                             this._insertPoint_v4(curve, [1, x, lo], t, true);
2347             //                             this._insertPoint_v4(curve, [1, NaN, NaN], t);
2348             //                         }
2349             //                         if (hi === Infinity) {
2350             //                             this._insertPoint_v4(curve, [1, NaN, NaN], t);
2351             //                             this._insertPoint_v4(curve, [1, x, hi], t, true);
2352             //                         }
2353             //                     }
2354             // }
2355         }
2356         if (d_rgt < -d_thresh) {
2357             // Right branch very steep downwards -> add the maximum
2358             this._insertPoint_v4(curve, [1, x, hi], t);
2359         } else if (d_rgt > d_thresh) {
2360             // Right branch very steep upwards -> add the minimum
2361             this._insertPoint_v4(curve, [1, x, lo], t);
2362         }
2363     },
2364 
2365     /**
2366      * Number of equidistant points where the function is evaluated
2367      */
2368     steps: 1021, //2053, // 1021,
2369 
2370     /**
2371      * If the absolute maximum of the set of differences is larger than
2372      * criticalThreshold * median of these values, it is regarded as critical point.
2373      * @see JXG.Math.Plot._criticalInterval
2374      */
2375     criticalThreshold: 1000,
2376 
2377     plot_v4: function (curve, ta, tb, steps) {
2378         var i,
2379             // j,
2380             le,
2381             components,
2382             idx,
2383             comp,
2384             groups,
2385             g,
2386             start,
2387             ret,
2388             x_table, y_table,
2389             t, t1, t2,
2390             // good,
2391             // bad,
2392             // x_int,
2393             y_int,
2394             // degree_x,
2395             // degree_y,
2396             h = (tb - ta) / steps,
2397             Ypl = function (x) {
2398                 return curve.Y(x, true);
2399             },
2400             Ymi = function (x) {
2401                 return -curve.Y(x, true);
2402             },
2403             h2 = h * 0.5;
2404 
2405         components = this.findComponents(curve, ta, tb, steps);
2406         for (idx = 0; idx < components.length; idx++) {
2407             comp = components[idx];
2408             ret = this.differenceMethod(comp, curve);
2409             groups = ret[0];
2410             x_table = ret[1];
2411             y_table = ret[2];
2412 
2413             // degree_x = ret[3];
2414             // degree_y = ret[4];
2415             // if (degree_x >= 0) {
2416             //     console.log("x polynomial of degree", degree_x);
2417             // }
2418             // if (degree_y >= 0) {
2419             //     console.log("y polynomial of degree", degree_y);
2420             // }
2421             if (groups.length === 0 || groups[0].type !== "borderleft") {
2422                 groups.unshift({
2423                     idx: 0,
2424                     t: comp.t_values[0],
2425                     x: comp.x_values[0],
2426                     y: comp.y_values[0],
2427                     type: "borderleft"
2428                 });
2429             }
2430             if (groups[groups.length - 1].type !== "borderright") {
2431                 le = comp.t_values.length;
2432                 groups.push({
2433                     idx: le - 1,
2434                     t: comp.t_values[le - 1],
2435                     x: comp.x_values[le - 1],
2436                     y: comp.y_values[le - 1],
2437                     type: "borderright"
2438                 });
2439             }
2440 
2441             start = 0;
2442             for (g = 0; g <= groups.length; g++) {
2443                 if (g === groups.length) {
2444                     le = comp.len;
2445                 } else {
2446                     le = groups[g].idx - 1;
2447                 }
2448 
2449                 // good = 0;
2450                 // bad = 0;
2451                 // Insert all uncritical points until next critical point
2452                 for (i = start; i < le - 2; i++) {
2453                     this._insertPoint_v4(
2454                         curve,
2455                         [1, comp.x_values[i], comp.y_values[i]],
2456                         comp.t_values[i]
2457                     );
2458                     // j = Math.max(0, i - 2);
2459                     // Add more points in critical intervals
2460                     if (
2461                         //degree_y === -1 && // No polynomial
2462                         i >= start + 3 &&
2463                         i < le - 3 && // Do not do this if too close to a critical point
2464                         y_table.length > 3 &&
2465                         Math.abs(y_table[2][i]) > 0.2 * Math.abs(y_table[0][i])
2466                     ) {
2467                         t = comp.t_values[i];
2468                         h2 = h * 0.25;
2469                         y_int = this.getInterval(curve, t, t + h);
2470                         if (Type.isObject(y_int)) {
2471                             if (y_table[2][i] > 0) {
2472                                 this._insertPoint_v4(curve, [1, t + h2, y_int.lo], t + h2);
2473                             } else {
2474                                 this._insertPoint_v4(
2475                                     curve,
2476                                     [1, t + h - h2, y_int.hi],
2477                                     t + h - h2
2478                                 );
2479                             }
2480                         } else {
2481                             t1 = Numerics.fminbr(Ypl, [t, t + h]);
2482                             t2 = Numerics.fminbr(Ymi, [t, t + h]);
2483                             if (t1 < t2) {
2484                                 this._insertPoint_v4(
2485                                     curve,
2486                                     [1, curve.X(t1, true), curve.Y(t1, true)],
2487                                     t1
2488                                 );
2489                                 this._insertPoint_v4(
2490                                     curve,
2491                                     [1, curve.X(t2, true), curve.Y(t2, true)],
2492                                     t2
2493                                 );
2494                             } else {
2495                                 this._insertPoint_v4(
2496                                     curve,
2497                                     [1, curve.X(t2, true), curve.Y(t2, true)],
2498                                     t2
2499                                 );
2500                                 this._insertPoint_v4(
2501                                     curve,
2502                                     [1, curve.X(t1, true), curve.Y(t1, true)],
2503                                     t1
2504                                 );
2505                             }
2506                         }
2507                         // bad++;
2508                     // } else {
2509                         // good++;
2510                     }
2511                 }
2512                 // console.log("GOOD", good, "BAD", bad);
2513 
2514                 // Handle next critical point
2515                 if (g < groups.length) {
2516                     //console.log("critical point / interval", groups[g]);
2517 
2518                     i = groups[g].idx;
2519                     if (groups[g].type === "borderleft" || groups[g].type === "borderright") {
2520                         this.handleBorder(curve, comp, groups[g], x_table, y_table);
2521                     } else {
2522                         this._seconditeration_v4(curve, comp, groups[g], x_table, y_table);
2523                     }
2524 
2525                     start = groups[g].idx + 1 + 1;
2526                 }
2527             }
2528 
2529             le = comp.len;
2530             if (idx < components.length - 1) {
2531                 this._insertPoint_v4(curve, [1, NaN, NaN], comp.right_t);
2532             }
2533         }
2534     },
2535 
2536     /**
2537      * Updates the data points of a parametric curve, plotVersion 4. This version is used if {@link JXG.Curve#plotVersion} is <tt>4</tt>.
2538      * @param {JXG.Curve} curve JSXGraph curve element
2539      * @param {Number} mi Left bound of curve
2540      * @param {Number} ma Right bound of curve
2541      * @returns {JXG.Curve} Reference to the curve object.
2542      */
2543     updateParametricCurve_v4: function (curve, mi, ma) {
2544         var ta, tb, w2, bbox;
2545 
2546         if (curve.xterm === "x") {
2547             // For function graphs we can restrict the plot interval
2548             // to the visible area +plus margin
2549             bbox = curve.board.getBoundingBox();
2550             w2 = (bbox[2] - bbox[0]) * 0.3;
2551             // h2 = (bbox[1] - bbox[3]) * 0.3;
2552             ta = Math.max(mi, bbox[0] - w2);
2553             tb = Math.min(ma, bbox[2] + w2);
2554         } else {
2555             ta = mi;
2556             tb = ma;
2557         }
2558 
2559         curve.points = [];
2560 
2561         //console.log("--------------------");
2562         this.plot_v4(curve, ta, tb, this.steps);
2563 
2564         curve.numberPoints = curve.points.length;
2565         //console.log(curve.numberPoints);
2566     },
2567 
2568     //----------------------------------------------------------------------
2569     // Plot algorithm alias
2570     //----------------------------------------------------------------------
2571 
2572     /**
2573      * Updates the data points of a parametric curve, alias for {@link JXG.Curve#updateParametricCurve_v2}.
2574      * This is needed for backwards compatibility, if this method has been
2575      * used directly in an application.
2576      * @param {JXG.Curve} curve JSXGraph curve element
2577      * @param {Number} mi Left bound of curve
2578      * @param {Number} ma Right bound of curve
2579      * @returns {JXG.Curve} Reference to the curve object.
2580      *
2581      * @see JXG.Curve#updateParametricCurve_v2
2582      */
2583     updateParametricCurve: function (curve, mi, ma) {
2584         return this.updateParametricCurve_v2(curve, mi, ma);
2585     }
2586 };
2587 
2588 export default Mat.Plot;
2589