Difference between revisions of "Population growth models"
From JSXGraph Wiki
Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
|||
(22 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
===Exponential population growth model=== | ===Exponential population growth model=== | ||
+ | In time <math> \Delta t</math> the population consisting of <math>y</math> elements grows by <math>\alpha\cdot y </math> elements: | ||
+ | <math> \Delta y = \alpha\cdot y\cdot \Delta t </math>, that is | ||
+ | <math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>. | ||
+ | With <math>\Delta t\to 0</math> we get | ||
+ | <math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>. | ||
+ | |||
+ | The initial population is <math>y(0)= s</math>. | ||
+ | |||
+ | The red line shows the exact solution of the differential equation <math>y(t)=s\cdot e^{\alpha t}</math>. | ||
+ | The blue line is the simulation with <math>\Delta t = 0.1</math>. | ||
<html> | <html> | ||
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | <form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | ||
Line 6: | Line 16: | ||
<jsxgraph height="500" width="600" board="board" box="box1"> | <jsxgraph height="500" width="600" board="board" box="box1"> | ||
− | brd = JXG.JSXGraph.initBoard('box1', { | + | var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true}); |
− | var t = brd. | + | var t = brd.create('turtle',[4,3,70]); |
+ | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
+ | var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
+ | var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'}); | ||
+ | |||
+ | t.hideTurtle(); | ||
− | var s = brd. | + | var A = 5; |
− | var alpha = brd. | + | var tau = 0.3; |
− | var e = brd. | + | |
+ | function clearturtle() { | ||
+ | t.cs(); | ||
+ | t.ht(); | ||
+ | } | ||
+ | |||
+ | function run() { | ||
+ | t.setPos(0,s.Value()); | ||
+ | t.setPenSize(4); | ||
+ | dx = 0.1; // global | ||
+ | x = 0.0; // global | ||
+ | loop(); | ||
+ | } | ||
+ | |||
+ | function loop() { | ||
+ | var dy = alpha.Value()*t.Y()*dx; // Exponential growth | ||
+ | t.moveTo([dx+t.X(),dy+t.Y()]); | ||
+ | x += dx; | ||
+ | if (x<20.0) { | ||
+ | setTimeout(loop,10); | ||
+ | } | ||
+ | } | ||
+ | </jsxgraph> | ||
+ | |||
+ | ===Other models=== | ||
+ | |||
+ | * [[Autocatalytic process]] | ||
+ | * [[Logistic process]] | ||
+ | |||
+ | ===The JavaScript code=== | ||
+ | <source lang="javascript"> | ||
+ | var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true}); | ||
+ | var t = brd.create('turtle',[4,3,70]); | ||
+ | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
+ | var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
+ | var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'}); | ||
t.hideTurtle(); | t.hideTurtle(); | ||
− | A = 5; | + | var A = 5; |
− | tau = 0.3; | + | var tau = 0.3; |
function clearturtle() { | function clearturtle() { | ||
Line 24: | Line 74: | ||
function run() { | function run() { | ||
− | t.setPos(0,s. | + | t.setPos(0,s.Value()); |
t.setPenSize(4); | t.setPenSize(4); | ||
− | + | dx = 0.1; // global | |
x = 0.0; // global | x = 0.0; // global | ||
loop(); | loop(); | ||
Line 32: | Line 82: | ||
function loop() { | function loop() { | ||
− | var | + | var dy = alpha.Value()*t.Y()*dx; // Exponential growth |
− | + | t.moveTo([dx+t.X(),dy+t.Y()]); | |
− | // | + | x += dx; |
− | t.moveTo([ | + | if (x<20.0) { |
− | x += | + | setTimeout(loop,10); |
− | if (x< | ||
− | setTimeout(loop, | ||
} | } | ||
} | } | ||
− | + | </source> | |
− | </ | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Turtle Graphics]] | [[Category:Turtle Graphics]] | ||
+ | [[Category:Calculus]] |
Latest revision as of 13:50, 8 June 2011
Exponential population growth model
In time [math] \Delta t[/math] the population consisting of [math]y[/math] elements grows by [math]\alpha\cdot y [/math] elements: [math] \Delta y = \alpha\cdot y\cdot \Delta t [/math], that is [math] \frac{\Delta y}{\Delta t} = \alpha\cdot y [/math].
With [math]\Delta t\to 0[/math] we get [math] \frac{d y}{d t} = \alpha\cdot y [/math], i.e. [math] y' = \alpha\cdot y [/math].
The initial population is [math]y(0)= s[/math].
The red line shows the exact solution of the differential equation [math]y(t)=s\cdot e^{\alpha t}[/math]. The blue line is the simulation with [math]\Delta t = 0.1[/math].
Other models
The JavaScript code
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true});
var t = brd.create('turtle',[4,3,70]);
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});
t.hideTurtle();
var A = 5;
var tau = 0.3;
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.Value());
t.setPenSize(4);
dx = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var dy = alpha.Value()*t.Y()*dx; // Exponential growth
t.moveTo([dx+t.X(),dy+t.Y()]);
x += dx;
if (x<20.0) {
setTimeout(loop,10);
}
}