Difference between revisions of "Population growth models"

From JSXGraph Wiki
Jump to navigationJump to search
Line 4: Line 4:
 
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>.
 
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>.
  
With <math>\Delta \to 0</math> we get:
+
With <math>\Delta \to 0</math> we get
 
<math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>.
 
<math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>.
  
The initial population is $y(0)= s$.
+
The initial population is <math>y(0)= s</math>.
 +
 
 +
The red line shows the exact solution of the differential equation <math>y(t)=s\cdot e^{\alpha x}</math>.
 +
The blue line is the simulation with <math>\Delta t = 0.1</math>.
 
<html>
 
<html>
 
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form>
 
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form>
Line 18: Line 21:
 
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
 
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
 
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
 
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}]);
+
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
  
 
t.hideTurtle();
 
t.hideTurtle();
Line 48: Line 51:
 
   }
 
   }
 
}
 
}
 +
</jsxgraph>
 +
 +
===The JavaScript code===
 +
<source lang="xml">
 +
<jsxgraph height="500" width="600" board="board"  box="box1">
 +
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
 +
var t = brd.createElement('turtle',[4,3,70]);
 +
           
 +
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
 +
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
 +
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
  
 +
t.hideTurtle();
 +
           
 +
function clearturtle() {
 +
  t.cs();
 +
  t.ht();
 +
}
 +
           
 +
function run() {
 +
  t.setPos(0,s.X());
 +
  t.setPenSize(4);
 +
  delta = 0.1; // global
 +
  x = 0.0;  // global
 +
  loop();
 +
}
 +
           
 +
function loop() {
 +
  var y = alpha.X()*t.pos[1];  // Exponential growth
 +
  t.moveTo([1.0+t.pos[0],y+t.pos[1]]);
 +
  x += delta;
 +
  if (x<10.0) {
 +
    setTimeout(loop,50);
 +
  }
 +
}
 
</jsxgraph>
 
</jsxgraph>
 +
</source>
  
 
[[Category:Examples]]
 
[[Category:Examples]]
 
[[Category:Turtle Graphics]]
 
[[Category:Turtle Graphics]]

Revision as of 18:11, 22 April 2009

Exponential population growth model

In time [math] \Delta y[/math] the population grows by [math]\alpha\cdot y [/math] elements: [math] \Delta y = \alpha\cdot y\cdot \Delta t [/math], that is [math] \frac{\Delta y}{\Delta t} = \alpha\cdot y [/math].

With [math]\Delta \to 0[/math] we get [math] \frac{d y}{d t} = \alpha\cdot y [/math], i.e. [math] y' = \alpha\cdot y [/math].

The initial population is [math]y(0)= s[/math].

The red line shows the exact solution of the differential equation [math]y(t)=s\cdot e^{\alpha x}[/math]. The blue line is the simulation with [math]\Delta t = 0.1[/math].

The JavaScript code

<jsxgraph height="500" width="600" board="board"  box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
            
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});

t.hideTurtle();
            
function clearturtle() {
  t.cs();
  t.ht();
}
            
function run() {
  t.setPos(0,s.X());
  t.setPenSize(4);
  delta = 0.1; // global
  x = 0.0;  // global
  loop();
}
             
function loop() {
  var y = alpha.X()*t.pos[1];   // Exponential growth
  t.moveTo([1.0+t.pos[0],y+t.pos[1]]);
  x += delta;
  if (x<10.0) {
     setTimeout(loop,50);
  }
}
</jsxgraph>