Extended mean value theorem

From JSXGraph Wiki
Revision as of 16:45, 29 January 2019 by A WASSERMANN (talk | contribs)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The extended mean value theorem (also called Cauchy's mean value theorem) is usually formulated as:

Let

[math]\displaystyle{ f, g: [a,b] \to \mathbb{R} }[/math]

be continuous functions that are differentiable on the open interval [math]\displaystyle{ (a,b) }[/math]. If [math]\displaystyle{ g'(x)\neq 0 }[/math] for all [math]\displaystyle{ x\in(a,b) }[/math], then there exists a value [math]\displaystyle{ \xi \in (a,b) }[/math] such that

[math]\displaystyle{ \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(b)}. }[/math]

Remark: It seems to be easier to state the extended mean value theorem in the following form:

Let

[math]\displaystyle{ f, g: [a,b] \to \mathbb{R} }[/math]

be continuous functions that are differentiable on the open interval [math]\displaystyle{ (a,b) }[/math]. Then there exists a value [math]\displaystyle{ \xi \in (a,b) }[/math] such that

[math]\displaystyle{ f'(\xi)\cdot (g(b)-g(a)) = g'(\xi) \cdot (f(b)-f(b)). }[/math]

This second formulation avoids the need that [math]\displaystyle{ g'(x)\neq 0 }[/math] for all [math]\displaystyle{ x\in(a,b) }[/math] and is therefore much easier to handle numerically.

The proof is similar, just use the function

[math]\displaystyle{ h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a)) }[/math]

and apply Rolle's theorem.

Visualization The extended mean value theorem says that given the curve

[math]\displaystyle{ C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t)) }[/math]

with the above prerequisites for [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math], there exists a point [math]\displaystyle{ \xi }[/math] on the curve where the curve's tangent is parallel to the secant through [math]\displaystyle{ C(a) }[/math] and [math]\displaystyle{ C(b) }[/math].


The underlying JavaScript code

var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});
var p = [];

p[0] = board.create('point', [0, -2], {size:2});
p[1] = board.create('point', [-1.5, 5], {size:2});
p[2] = board.create('point', [1, 4], {size:2});
p[3] = board.create('point', [3, 3], {size:2});

// Curve
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});

// Secant 
line = board.create('line', [p[0], p[3]], {strokeColor:'#ff0000', dash:1});

var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);

// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with that formulation:
var quot = function(t) {
    return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
};

var r = board.create('glider', [
            function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },
            function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },
            graph], {name: '', size: 4, fixed:true, color: 'blue'});

board.create('tangent', [r], {strokeColor:'#ff0000'});