Difference between revisions of "Differential equations"
From JSXGraph Wiki
Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||
(27 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | Display solutions of the ordinary differential equation | ||
+ | :<math> y'= f(t,y)</math> | ||
+ | with initial value <math>(t_0,y_0)</math>. | ||
+ | |||
+ | It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is <math>c</math>. | ||
<html> | <html> | ||
<form> | <form> | ||
− | f(t, | + | f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()"> |
</form> | </form> | ||
</html> | </html> | ||
<jsxgraph width="500" height="500"> | <jsxgraph width="500" height="500"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
− | var N = brd.create('slider',[[-7,7],[7,7],[-15, | + | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); |
− | var P = brd.create('point',[0,1], {name:'( | + | var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'}); |
+ | var P = brd.create('point',[0,1], {name:'(t_0, y_0)'}); | ||
+ | var f; | ||
function doIt() { | function doIt() { | ||
− | var | + | var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y'); |
− | f = | + | f = function (t, yy) { |
+ | return [snip(t, yy[0])]; | ||
+ | } | ||
brd.update(); | brd.update(); | ||
} | } | ||
function ode() { | function ode() { | ||
− | return JXG.Math.Numerics.rungeKutta( | + | return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f); |
} | } | ||
− | var g = brd. | + | var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2}); |
g.updateDataArray = function() { | g.updateDataArray = function() { | ||
var data = ode(); | var data = ode(); | ||
var h = N.Value()/200; | var h = N.Value()/200; | ||
+ | var i; | ||
this.dataX = []; | this.dataX = []; | ||
this.dataY = []; | this.dataY = []; | ||
− | for( | + | for(i=0; i<data.length; i++) { |
this.dataX[i] = P.X()+i*h; | this.dataX[i] = P.X()+i*h; | ||
this.dataY[i] = data[i][0]; | this.dataY[i] = data[i][0]; | ||
Line 32: | Line 42: | ||
doIt(); | doIt(); | ||
</jsxgraph> | </jsxgraph> | ||
+ | |||
+ | ===See also=== | ||
+ | * [[Systems of differential equations]] | ||
+ | * [[Lotka-Volterra equations]] | ||
+ | * [[Epidemiology: The SIR model]] | ||
+ | * [[Population growth models]] | ||
+ | * [[Autocatalytic process]] | ||
+ | * [[Logistic process]] | ||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
+ | <source lang="xml"> | ||
+ | <form> | ||
+ | f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()"> | ||
+ | </form> | ||
+ | </source> | ||
<source lang="javascript"> | <source lang="javascript"> | ||
+ | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
+ | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
+ | var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'}); | ||
+ | var P = brd.create('point',[0,1], {name:'(t_0, y_0)'}); | ||
+ | var f; | ||
+ | |||
+ | function doIt() { | ||
+ | var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y'); | ||
+ | f = function (t, yy) { | ||
+ | return [snip(t, yy[0])]; | ||
+ | } | ||
+ | brd.update(); | ||
+ | } | ||
+ | |||
+ | function ode() { | ||
+ | return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f); | ||
+ | } | ||
+ | |||
+ | var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2}); | ||
+ | g.updateDataArray = function() { | ||
+ | var data = ode(); | ||
+ | var h = N.Value()/200; | ||
+ | var i; | ||
+ | this.dataX = []; | ||
+ | this.dataY = []; | ||
+ | for(i=0; i<data.length; i++) { | ||
+ | this.dataX[i] = P.X()+i*h; | ||
+ | this.dataY[i] = data[i][0]; | ||
+ | } | ||
+ | }; | ||
+ | doIt(); | ||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Calculus]] | [[Category:Calculus]] |
Latest revision as of 10:46, 18 December 2020
Display solutions of the ordinary differential equation
- [math] y'= f(t,y)[/math]
with initial value [math](t_0,y_0)[/math].
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is [math]c[/math].
See also
- Systems of differential equations
- Lotka-Volterra equations
- Epidemiology: The SIR model
- Population growth models
- Autocatalytic process
- Logistic process
The underlying JavaScript code
<form>
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'});
var f;
function doIt() {
var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y');
f = function (t, yy) {
return [snip(t, yy[0])];
}
brd.update();
}
function ode() {
return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
var data = ode();
var h = N.Value()/200;
var i;
this.dataX = [];
this.dataY = [];
for(i=0; i<data.length; i++) {
this.dataX[i] = P.X()+i*h;
this.dataY[i] = data[i][0];
}
};
doIt();