Logistic process
From JSXGraph Wiki
Logistic population growth model
In time [math]\displaystyle{ \Delta t }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y -\tau\cdot y^2 }[/math] elements: [math]\displaystyle{ \Delta y = (\alpha\cdot y- \tau\cdot y^2)\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y -\tau\cdot y^2 }[/math].
With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y -\tau\cdot y^2 }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y -\tau\cdot y^2 }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math], [math]\displaystyle{ \tau:=0.3 }[/math].
The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].
Other models
The JavaScript code
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 11.5, 14.5, -11.5], axis:true});
var t = brd.create('turtle',[4,3,70]);
var s = brd.create('slider', [[0,-5], [10,-5],[0,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.9,2]], {name:'α'});
t.hideTurtle();
var A = 5;
var tau = 0.3;
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.Value());
t.setPenSize(4);
dx = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var dy = (alpha.Value()*t.Y()-tau*t.Y()*t.Y())*dx; // Logistic process
t.moveTo([dx+t.X(),dy+t.Y()]);
x += dx;
if (x<20.0) {
setTimeout(loop,10);
}
}