Circles on circles rotating in opposite directions: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
This is an example of a parametric curve plot. It shows the orbit of a point on a circle. The circle rotates on a circle which again rotates on the unit circle. The resulting curve is described by the function | This is an example of a parametric curve plot. It shows the orbit of a point on a circle. The circle rotates on a circle which again rotates on the unit circle. The resulting curve is described by the function | ||
:<math> [0,2\pi]\to{\mathbf R}^2, \quad t\mapsto {\cos(t)\choose \sin(t)}+c_1{\cos(f_1t)\choose \sin(f_1t)}+c_2{\sin(f_2t)\choose \cos(f_2t)}</math> | :<math> [0,2\pi]\to{\mathbf R}^2, \quad t\mapsto {\cos(t)\choose \sin(t)}+c_1{\cos(f_1t)\choose \sin(f_1t)}+c_2{\sin(f_2t)\choose \cos(f_2t)}</math> | ||
This example shows the seamless integration of JSXGraph into the web page. | |||
<html> | <html> | ||
<div style="margin:5px"> | <div style="margin:5px"> | ||
<p> | <p> | ||
Line 30: | Line 29: | ||
oninput="f2 = this.value; board.update();" | oninput="f2 = this.value; board.update();" | ||
/> | /> | ||
</p> | </p> | ||
</div> | </div> | ||
Line 62: | Line 59: | ||
This is the first experiment with the jQuery UI package. So, the code may not be optimized, yet. The main difficulty is to read the values of the sliders. This is done via four JavaScript variables <math>c1, c2, f1, f2</math>. | This is the first experiment with the jQuery UI package. So, the code may not be optimized, yet. The main difficulty is to read the values of the sliders. This is done via four JavaScript variables <math>c1, c2, f1, f2</math>. | ||
<source lang="html4strict"> | <source lang="html4strict"> | ||
< | <div style="margin:5px"> | ||
<p> | <p> | ||
<label for="c1">c1:</label> | <label for="c1">c1:</label> | ||
<input type=" | <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" | ||
min="0" max="100" value="60" | |||
oninput="c1 = this.value*0.01; board.update();" | |||
/> | |||
<label for="f1">f1:</label> | <label for="f1">f1:</label> | ||
<input type=" | <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" | ||
min="1" max="100" value="7" | |||
oninput="f1 = this.value; board.update();" | |||
/> | |||
<label for="c2">c2:</label> | <label for="c2">c2:</label> | ||
<input type=" | <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" | ||
min="0" max="100" value="0" | |||
oninput="c2 = this.value*0.01; | |||
board.updateQuality = board.BOARD_QUALITY_HIGH; | |||
board.update();" | |||
/> | |||
<label for="f2">f2:</label> | <label for="f2">f2:</label> | ||
<input type=" | <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" | ||
min="1" max="100" value="17" | |||
oninput="f2 = this.value; board.update();" | |||
/> | |||
</p> | </p> | ||
</div> | </div> | ||
<jsxgraph width="500" height="500" box="jxgbox"> | <jsxgraph width="500" height="500" box="jxgbox"> | ||
board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true}); | board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true}); | ||
Line 138: | Line 95: | ||
function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.sin(f2*t);}, | function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.sin(f2*t);}, | ||
function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.cos(f2*t);}, | function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.cos(f2*t);}, | ||
0,2.02*Math.PI],{strokeWidth:2}); | 0,2.02*Math.PI], {strokeWidth:2}); | ||
</script> | </script> | ||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Curves]] | [[Category:Curves]] |
Revision as of 12:16, 23 June 2020
This is an example of a parametric curve plot. It shows the orbit of a point on a circle. The circle rotates on a circle which again rotates on the unit circle. The resulting curve is described by the function
- [math]\displaystyle{ [0,2\pi]\to{\mathbf R}^2, \quad t\mapsto {\cos(t)\choose \sin(t)}+c_1{\cos(f_1t)\choose \sin(f_1t)}+c_2{\sin(f_2t)\choose \cos(f_2t)} }[/math]
This example shows the seamless integration of JSXGraph into the web page.
Variation:
External references
Epicycloidal curves have been used by the ancient greeks to describe the orbits of the planets, see
- Giovanni Gallavotti: Quasi periodic motions from Hipparchus to Kolmogorov
- http://www.swisseduc.ch/mathematik/schwingungen/docs/kapitel3.pdf for a detailed explanation in German
- Experiments by Harald Fripertinger
The source code of this construction
This is the first experiment with the jQuery UI package. So, the code may not be optimized, yet. The main difficulty is to read the values of the sliders. This is done via four JavaScript variables [math]\displaystyle{ c1, c2, f1, f2 }[/math].
<div style="margin:5px">
<p>
<label for="c1">c1:</label>
<input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;"
min="0" max="100" value="60"
oninput="c1 = this.value*0.01; board.update();"
/>
<label for="f1">f1:</label>
<input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;"
min="1" max="100" value="7"
oninput="f1 = this.value; board.update();"
/>
<label for="c2">c2:</label>
<input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;"
min="0" max="100" value="0"
oninput="c2 = this.value*0.01;
board.updateQuality = board.BOARD_QUALITY_HIGH;
board.update();"
/>
<label for="f2">f2:</label>
<input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;"
min="1" max="100" value="17"
oninput="f2 = this.value; board.update();"
/>
</p>
</div>
<jsxgraph width="500" height="500" box="jxgbox">
board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true});
var c1 = 0.6;
var c2 = 0.0;
var f1 = 7;
var f2 = 17;
var c = board.create('curve', [
function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.sin(f2*t);},
function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.cos(f2*t);},
0,2.02*Math.PI], {strokeWidth:2});
</script>