Differentiability: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 7: Line 7:


<jsxgraph box="box" width="600" height="400">
<jsxgraph box="box" width="600" height="400">
//JXG.Options.text.useMathJax = true;
board = JXG.JSXGraph.initBoard('box', {
board = JXG.JSXGraph.initBoard('box', {
     boundingbox: [-5, 10, 7, -6],  
     boundingbox: [-5, 10, 7, -6],  
Line 34: Line 33:
      
      
var txt = board.create('text', [2, 7, function() {  
var txt = board.create('text', [2, 7, function() {  
         return ':<math>\\frac{' +  
         return '(' +  
               fx.Y().toFixed(2) + '-(' + fx0.Y().toFixed(2) +  
               fx.Y().toFixed(2) + '-(' + fx0.Y().toFixed(2) +  
               ')}{' +  
               '))(' +  
               fx.X().toFixed(2) + '-(' + fx0.X().toFixed(2) +
               fx.X().toFixed(2) + '-(' + fx0.X().toFixed(2) +
               ')} = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3) + '</math>';
               ')) = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3);
     }]);
     }]);



Revision as of 19:33, 22 January 2019

If the function [math]\displaystyle{ f: D \to {\mathbb R} }[/math] is differentiable in [math]\displaystyle{ x_0\in D }[/math] then there is a function [math]\displaystyle{ f_1: D \to {\mathbb R} }[/math] that is continuous in [math]\displaystyle{ x_0 }[/math] such that

[math]\displaystyle{ f(x) = f(x_0) + (x-x_0) f_1(x) }[/math]


The underlying JavaScript code