Differentiability: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 34: Line 34:
      
      
var txt = board.create('text', [2, 7, function() {  
var txt = board.create('text', [2, 7, function() {  
         return '<math>\\[ \\frac{' +  
         return ':<math>\\frac{' +  
               fx.Y().toFixed(2) + '-(' + fx0.Y().toFixed(2) +  
               fx.Y().toFixed(2) + '-(' + fx0.Y().toFixed(2) +  
               ')}{' +  
               ')}{' +  
               fx.X().toFixed(2) + '-(' + fx0.X().toFixed(2) +
               fx.X().toFixed(2) + '-(' + fx0.X().toFixed(2) +
               ')} = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3) + '\\]</math>';
               ')} = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3) + '</math>';
     }]);
     }]);



Revision as of 19:32, 22 January 2019

If the function [math]\displaystyle{ f: D \to {\mathbb R} }[/math] is differentiable in [math]\displaystyle{ x_0\in D }[/math] then there is a function [math]\displaystyle{ f_1: D \to {\mathbb R} }[/math] that is continuous in [math]\displaystyle{ x_0 }[/math] such that

[math]\displaystyle{ f(x) = f(x_0) + (x-x_0) f_1(x) }[/math]


The underlying JavaScript code