Differentiability: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 1: Line 1:


If the function <math>f: D \to R</math> is differentiable in <math>x_0\in D</math> then there is a function  
If the function <math>f: D \to {\mathbb R}</math> is differentiable in <math>x_0\in D</math> then there is a function  
<math>f_1: D \to R</math> that is continuous in <math>x_0</math> such that
<math>f_1: D \to {\mathbb R}</math> that is continuous in <math>x_0</math> such that


:<math> f(x) = f(x_0) + (x-x_0) f_1(x) </math>
:<math> f(x) = f(x_0) + (x-x_0) f_1(x) </math>

Revision as of 19:28, 22 January 2019

If the function [math]\displaystyle{ f: D \to {\mathbb R} }[/math] is differentiable in [math]\displaystyle{ x_0\in D }[/math] then there is a function [math]\displaystyle{ f_1: D \to {\mathbb R} }[/math] that is continuous in [math]\displaystyle{ x_0 }[/math] such that

[math]\displaystyle{ f(x) = f(x_0) + (x-x_0) f_1(x) }[/math]


The underlying JavaScript code