Differentiability: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 1: Line 1:
If the function <math>f: D \to {\mathbb R}</math> is differentiable in <math>x_0\in D</math>
If the function <math>f: D \to R</math> is differentiable in <math>x_0\in D</math> then there is a function
<math>f_1: D \to R</math> that is continuous in <math>x_0</math> such that
 
:<math> f(x) = f(x_0) + (x-x_0) f_1(x) </math>
 
<html>
<html>
   <script type="text/javascript" src="/distrib/MathJax/MathJax.js"></script>
   <script type="text/javascript" src="/distrib/MathJax/MathJax.js"></script>

Revision as of 19:25, 22 January 2019

If the function [math]\displaystyle{ f: D \to R }[/math] is differentiable in [math]\displaystyle{ x_0\in D }[/math] then there is a function [math]\displaystyle{ f_1: D \to R }[/math] that is continuous in [math]\displaystyle{ x_0 }[/math] such that

[math]\displaystyle{ f(x) = f(x_0) + (x-x_0) f_1(x) }[/math]

The underlying JavaScript code