Thales inscribed angle theorem: Difference between revisions
From JSXGraph Wiki
(Created page with "This example demonstrates Thales' inscribed angle theorem. You can move point the <math>P</math>, or <math>A</math> and <math>B</math>. It also demonstrates how to dynamically ge...") |
|||
Line 40: | Line 40: | ||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
<source lang="javascript"> | <source lang="javascript"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[- | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-6,6,6,-6]}); | ||
o1 = brd.create('point', [-2, 2], {name: 'O1'}); | o1 = brd.create('point', [-2, 2], {name: 'O1'}); | ||
o2 = brd.create('point', [3, -3], {name: 'O2'}); | o2 = brd.create('point', [3, -3], {name: 'O2'}); |
Latest revision as of 22:17, 26 January 2014
This example demonstrates Thales' inscribed angle theorem. You can move point the [math]\displaystyle{ P }[/math], or [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math]. It also demonstrates how to dynamically get an angle value in JSXGraph and set a label based on it using hooks.
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-6,6,6,-6]});
o1 = brd.create('point', [-2, 2], {name: 'O1'});
o2 = brd.create('point', [3, -3], {name: 'O2'});
p1 = brd.create('point', [-3, 5], {name: 'P1'});
p2 = brd.create('point', [2, -3], {name: 'P2'});
c1 = brd.create('circle', [o1, p1]);
c2 = brd.create('circle', [o2, p2]);
m = brd.create('midpoint', [o1, o2], {name: 'M'});
lm = brd.create('line', [o1, o2], {'strokeWidth': '1px', 'strokeColor':'gray'} );
c3 = brd.create('circle', [m, o2], {'strokeColor':'green', strokeWidth: '1px'});
c4 = brd.create('circle', [o1, function() {
r1 = c1.Radius();
r2 = c2.Radius();
if(r1 > r2) {
return r1 - r2;
} else {
return r2 + r1;
}
}], {'strokeColor': 'purple', strokeWidth: '1px'});
i1 = brd.create('intersection', [c3,c4,0],{visible:true});
i2 = brd.create('intersection', [c3,c4,1],{visible:true});
l1 = brd.create('line', [o1, i1], {visible: false});
l2 = brd.create('line', [o1, i2], {visible: false});
i3 = brd.create('intersection', [c1,l1,0],{visible:true});
i4 = brd.create('intersection', [c1,l2,0],{visible:true});
v1 = brd.create('arrow', [o1, i3], {strokeColor: 'lightblue', strokeWidth: '1px'});
v2 = brd.create('arrow', [o1, i4], {strokeColor: 'lightblue', strokeWidth: '1px'});
l3 = brd.create('line', [i1, o1], {visible: false});
l4 = brd.create('line', [o1, i2], {visible: false});
t1 = brd.create('tangent', [c1, i3], {strokeColor:'darkblue'});
t2 = brd.create('tangent', [c1, i4], {strokeColor:'darkblue'});
t3 = brd.create('line', [o2, i1], {strokeColor:'pink'});
t4 = brd.create('line', [o2, i2], {strokeColor:'pink'});