Tschirnhausen Cubic Catacaustic: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 34: | Line 34: | ||
t = reflectionpoint.position, | t = reflectionpoint.position, | ||
u = JXG.Math.Numerics.D(cubic.X)(t), | u = JXG.Math.Numerics.D(cubic.X)(t), | ||
v = JXG.Math.Numerics.D(cubic.Y)(t) | v = JXG.Math.Numerics.D(cubic.Y)(t), | ||
dirx = a*v*v-2*b*u*v-a*u*u, | |||
diry = b*u*u-2*a*u*v-b*v*v; | |||
return -(reflectionpoint.X()*dirx+reflectionpoint.Y()*diry)/reflectionpoint.Z(); | |||
}, | }, | ||
function(){ | function(){ |
Revision as of 13:54, 13 January 2011
The Tschirnhausen cubic (black curve) is defined parametrically as
- [math]\displaystyle{ x = a3(t^2-3) }[/math]
- [math]\displaystyle{ y = at(t^2-3) }[/math]
Its catcaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations
- [math]\displaystyle{ x = a6(t^2-1) }[/math]
- [math]\displaystyle{ y = a4t^3 }[/math]
References
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});
var cubic = brd.create('curve',
[function(t){ return a.Value()*3*(t*t-3);},
function(t){ return a.Value()*t*(t*t-3);},
-5, 5
],
{strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var cataustic = brd.create('curve',
[function(t){ return a.Value()*6*(t*t-1);},
function(t){ return a.Value()*4*t*t*t;},
-4, 4
],
{strokeWidth:1, strokeColor:'red'});
brd.unsuspendUpdate();