Tschirnhausen Cubic Catacaustic: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 36: Line 36:
             var a = dir.stdform[1], b = dir.stdform[2],
             var a = dir.stdform[1], b = dir.stdform[2],
                 t = reflectionpoint.position,
                 t = reflectionpoint.position,
                 u = JXG.Math.Numerics(cubic.X)(t),  
                 u = JXG.Math.Numerics.D(cubic.X)(t),  
                 v = JXG.Math.Numerics(cubic.Y)(t);
                 v = JXG.Math.Numerics.D(cubic.Y)(t);
             return -v;
             return -v;
         },
         },
Line 43: Line 43:
             var a = dir.stdform[1], b = dir.stdform[2],
             var a = dir.stdform[1], b = dir.stdform[2],
                 t = reflectionpoint.position,
                 t = reflectionpoint.position,
                 u = JXG.Math.Numerics(cubic.X)(t),  
                 u = JXG.Math.Numerics.D(cubic.X)(t),  
                 v = JXG.Math.Numerics(cubic.Y)(t);
                 v = JXG.Math.Numerics.D(cubic.Y)(t);
             return u;
             return u;
         }
         }

Revision as of 13:47, 13 January 2011

The Tschirnhausen cubic (black curve) is defined parametrically as

[math]\displaystyle{ x = a3(t^2-3) }[/math]
[math]\displaystyle{ y = at(t^2-3) }[/math]

Its catcaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations

[math]\displaystyle{ x = a6(t^2-1) }[/math]
[math]\displaystyle{ y = a4t^3 }[/math]

References

The underlying JavaScript code

var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});

var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});

var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});

var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -4, 4
                 ],
                 {strokeWidth:1, strokeColor:'red'});
brd.unsuspendUpdate();