Tschirnhausen Cubic Catacaustic: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| Line 1: | Line 1: | ||
The Tschirnhausen cubic is defined parametrically as  | |||
:<math> x = t^2 </math>  | :<math> x = a3(t^2-3) </math>  | ||
:<math> y = at^3 </math>  | :<math> y = at(t^2-3) </math>  | ||
Its catcaustic with radiant point <math>(-8a,p)</math>  | |||
is the semicubical parabola with parametric equations  | |||
:<math> x = a6(t^2-1) </math>  | |||
:<math> y = a4t^3 </math>  | |||
<jsxgraph width="600" height="600">  | <jsxgraph width="600" height="600">  | ||
| Line 26: | Line 32: | ||
                  ],  |                   ],  | ||
                  {strokeWidth:1, strokeColor:'red'});  |                   {strokeWidth:1, strokeColor:'red'});  | ||
brd.unsuspendUpdate();  | brd.unsuspendUpdate();  | ||
})();  | })();  | ||
| Line 32: | Line 37: | ||
===References===  | ===References===  | ||
* [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.]  | |||
===The underlying JavaScript code===  | ===The underlying JavaScript code===  | ||
<source lang="javascript">  | <source lang="javascript">  | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});  | |||
brd.suspendUpdate();  | |||
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});  | |||
var cubic = brd.create('curve',  | |||
             [function(t){ return a.Value()*3*(t*t-3);},  | |||
              function(t){ return a.Value()*t*(t*t-3);},  | |||
              -5, 5  | |||
             ],  | |||
             {strokeWidth:1, strokeColor:'black'});  | |||
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});  | |||
var cataustic = brd.create('curve',  | |||
                 [function(t){ return a.Value()*6*(t*t-1);},  | |||
                  function(t){ return a.Value()*4*t*t*t;},  | |||
                 -2, 2  | |||
                 ],  | |||
                 {strokeWidth:1, strokeColor:'red'});  | |||
brd.unsuspendUpdate();  | |||
</source>  | </source>  | ||
[[Category:Examples]]  | [[Category:Examples]]  | ||
[[Category:Curves]]  | [[Category:Curves]]  | ||
Revision as of 10:06, 13 January 2011
The Tschirnhausen cubic is defined parametrically as
- [math]\displaystyle{ x = a3(t^2-3) }[/math]
 
- [math]\displaystyle{ y = at(t^2-3) }[/math]
 
Its catcaustic with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations
- [math]\displaystyle{ x = a6(t^2-1) }[/math]
 
- [math]\displaystyle{ y = a4t^3 }[/math]
 
References
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});
var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -2, 2
                 ],
                 {strokeWidth:1, strokeColor:'red'});
brd.unsuspendUpdate();