Tschirnhausen Cubic Catacaustic: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
The Tschirnhausen cubic is defined parametrically as | |||
:<math> x = t^2 </math> | :<math> x = a3(t^2-3) </math> | ||
:<math> y = at^3 </math> | :<math> y = at(t^2-3) </math> | ||
Its catcaustic with radiant point <math>(-8a,p)</math> | |||
is the semicubical parabola with parametric equations | |||
:<math> x = a6(t^2-1) </math> | |||
:<math> y = a4t^3 </math> | |||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
Line 26: | Line 32: | ||
], | ], | ||
{strokeWidth:1, strokeColor:'red'}); | {strokeWidth:1, strokeColor:'red'}); | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
})(); | })(); | ||
Line 32: | Line 37: | ||
===References=== | ===References=== | ||
* [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.] | |||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
<source lang="javascript"> | <source lang="javascript"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true}); | |||
brd.suspendUpdate(); | |||
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'}); | |||
var cubic = brd.create('curve', | |||
[function(t){ return a.Value()*3*(t*t-3);}, | |||
function(t){ return a.Value()*t*(t*t-3);}, | |||
-5, 5 | |||
], | |||
{strokeWidth:1, strokeColor:'black'}); | |||
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'}); | |||
var cataustic = brd.create('curve', | |||
[function(t){ return a.Value()*6*(t*t-1);}, | |||
function(t){ return a.Value()*4*t*t*t;}, | |||
-2, 2 | |||
], | |||
{strokeWidth:1, strokeColor:'red'}); | |||
brd.unsuspendUpdate(); | |||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Curves]] | [[Category:Curves]] |
Revision as of 10:06, 13 January 2011
The Tschirnhausen cubic is defined parametrically as
- [math]\displaystyle{ x = a3(t^2-3) }[/math]
- [math]\displaystyle{ y = at(t^2-3) }[/math]
Its catcaustic with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations
- [math]\displaystyle{ x = a6(t^2-1) }[/math]
- [math]\displaystyle{ y = a4t^3 }[/math]
References
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});
var cubic = brd.create('curve',
[function(t){ return a.Value()*3*(t*t-3);},
function(t){ return a.Value()*t*(t*t-3);},
-5, 5
],
{strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var cataustic = brd.create('curve',
[function(t){ return a.Value()*6*(t*t-1);},
function(t){ return a.Value()*4*t*t*t;},
-2, 2
],
{strokeWidth:1, strokeColor:'red'});
brd.unsuspendUpdate();