Least-squares line fitting: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 6: | Line 6: | ||
// Experiments with lines and circles: | // Experiments with lines and circles: | ||
// Plot random points on a line disturbed by a random factor | // Plot random points on a line disturbed by a random factor | ||
var i, | var i, p1 = [], angle, xr, yr, delta = 0.1; | ||
// Random points are constructed which lie roughly on a line | // Random points are constructed which lie roughly on a line | ||
Line 18: | Line 17: | ||
yr = 10*(Math.random()-0.5); | yr = 10*(Math.random()-0.5); | ||
xr = 0.*yr+delta*(Math.random()-0.5); | xr = 0.*yr+delta*(Math.random()-0.5); | ||
p1.push(brd.create('point',[xr, yr], {withLabel:false})); | |||
} | } | ||
// Plot random points on a circle disturbed by a random factor | // Plot random points on a circle disturbed by a random factor | ||
var i, | var i, p2 = [], angle, co, si, delta = 0.2; | ||
// Random points are constructed which lie roughly on a circle | // Random points are constructed which lie roughly on a circle | ||
Line 33: | Line 32: | ||
co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | ||
si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | ||
p2.push(brd.create('point',[co+2, si-1], {withLabel:false})); | |||
} | } | ||
} | } | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
var bestFit = function(p) { | |||
// | // | ||
// From here on, the best-fitting circle or line is found by least-squares fitting. | // From here on, the best-fitting circle or line is found by least-squares fitting. | ||
Line 101: | Line 101: | ||
brd.create('circle',[[zm,xm,ym],radius]); | brd.create('circle',[[zm,xm,ym],radius]); | ||
} | } | ||
}; | |||
</jsxgraph> | </jsxgraph> | ||
Revision as of 18:09, 9 November 2010
This little JXSGraph application finds the line or the circle which is the best fit for given set of points.
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true});
brd.suspendUpdate();
// Experiments with lines and circles:
if (false) {
// Plot random points on a line disturbed by a random factor
var i, p = [], angle, xr, yr, delta = 0.1;
// Random points are constructed which lie roughly on a line
// defined by y = 0.3*x+1.
// delta*0.5 is the maximal distance in y-direction of the random
// points from the line.
brd.suspendUpdate();
for (i=0;i<100;i++) {
yr = 10*(Math.random()-0.5);
xr = 0.*yr+delta*(Math.random()-0.5);
p.push(brd.create('point',[xr, yr], {withLabel:false}));
}
} else {
// Plot random points on a circle disturbed by a random factor
var i, p = [], angle, co, si, delta = 0.2;
// Random points are constructed which lie roughly on a circle
// of radius 4 having the origin as center.
// delta*0.5 is the maximal distance in x- and y- direction of the random
// points from the circle line.
for (i=0;i<100;i++) {
angle = Math.random()*2*Math.PI;
co = 4*Math.cos(angle)+delta*(Math.random()-0.5);
si = 4*Math.sin(angle)+delta*(Math.random()-0.5);
p.push(brd.create('point',[co+2, si-1], {withLabel:false}));
}
}
brd.unsuspendUpdate();
//
// From here on, the best-fitting circle or line is found by least-squares fitting.
//
var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d,
eigen, minIndex, minE, ev, c, xm, ym, zm, radius;
n = p.length;
for (i=0;i<n;i++) {
r.push([1.0, p[i].X(), p[i].Y()]);
d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2];
r[i][0] = 1.0 - r[i][0]/d;
r[i][1] /= d;
r[i][2] /= d;
}
for (j=0;j<3;j++) {
for (i=0,d=0;i<n;i++) {
d += r[i][j];
}
d /= n;
rbar[j] = d;
for (i=0;i<n;i++) {
r[i][j] -= d;
}
}
for (i=0;i<n;i++) {
A[0][0] += r[i][0]*r[i][0];
A[0][1] += r[i][0]*r[i][1];
A[0][2] += r[i][0]*r[i][2];
A[1][0] += r[i][1]*r[i][0];
A[1][1] += r[i][1]*r[i][1];
A[1][2] += r[i][1]*r[i][2];
A[2][0] += r[i][2]*r[i][0];
A[2][1] += r[i][2]*r[i][1];
A[2][2] += r[i][2]*r[i][2];
}
eigen = JXG.Math.Numerics.Jacobi(A);
minIndex = 0;
minE = eigen[0][0][0];
for (j=1;j<3;j++) {
if (eigen[0][j][j]<minE) {
minIndex = j;
minE = eigen[0][j][j];
}
}
ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]];
c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]);
xm = -ev[1];
ym = -ev[2];
zm = 2.0*(c+ev[0]);
//console.log(c, c+ev[0]);
// If c is close to zero, the best fittting object is a line.
// The best threshold parameter has yet to be determined.
// At the moment it is set to 0.01.
if (Math.abs(c)<0.01) {
brd.create('line',[zm,xm,ym], {strokeColor:'green'});
} else {
var radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm));
brd.create('circle',[[zm,xm,ym],radius]);
}