Cauchy's mean value theorem: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| Line 8: | Line 8: | ||
p[0] = board.create('point', [-2,1], {style:4});  | p[0] = board.create('point', [-2,1], {style:4});  | ||
p[1] = board.create('point', [-1,2], {style:4});  | p[1] = board.create('point', [-1,2], {style:4});  | ||
p[2] = board.create('point', [0,3], {style:4});  | p[2] = board.create('point', [0.5,3], {style:4});  | ||
p[3] = board.create('point', [1,2], {style:4});  | p[3] = board.create('point', [1,2], {style:4});  | ||
p[4] = board.create('point', [2,1], {style:4});  | p[4] = board.create('point', [2,1], {style:4});  | ||
| Line 14: | Line 14: | ||
var graph = board.create('curve', fArray, {strokeWidth:3,strokeOpacity:0.5});  | var graph = board.create('curve', fArray, {strokeWidth:3,strokeOpacity:0.5});  | ||
var g = function(t) {  | var g = function(t) {  | ||
      return board.D(fArray[0])(t)/board.D(fArray[1])(t)-(p[4].X()-p[0].X())/(p[4].Y()-p[0].Y());  |       return board.D(fArray[0])(t)/board.D(fArray[1])(t)-(p[4].X()-p[0].X())/(p[4].Y()-p[0].Y());  | ||
| Line 24: | Line 23: | ||
                     graph], {name:' ',style:6,fixed:true});  |                      graph], {name:' ',style:6,fixed:true});  | ||
board.create('tangent', [r], {strokeColor:'#ff0000'});  | board.create('tangent', [r], {strokeColor:'#ff0000'});  | ||
/*  | |||
*/  | */  | ||
line = board.create('line',[p[0],p[4]],{strokeColor:'#ff0000',dash:1});  | line = board.create('line',[p[0],p[4]],{strokeColor:'#ff0000',dash:1});  | ||
Revision as of 12:54, 27 January 2010
Cauchy's mean value theorem is also known as extended mean value theorem. In Germany it is called Zweiter Mittelwertsatz.
DRAFT