Predicting maximal strength: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 1: Line 1:
This little application tries to predict the ''maximal strength'' (1RM) based on a
''repetitions to fatigue'' (RTF) value.
The calculation is based on the so called ''KLW formula'':
:<math>
1RM = w\cdot(0.988+0.0104\cdot x+0.00190\cdot x^2-0.0000584\cdot x^3)
</math>
<jsxgraph width=700 height=500>
<jsxgraph width=700 height=500>
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,1.8,30,0.8]});
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-1,1.8,30,0.8]});
Line 4: Line 12:
by = brd.createElement('axis', [[0,0], [0,1]], {});
by = brd.createElement('axis', [[0,0], [0,1]], {});


var w = brd.createElement('slider',[[24,0.92],[24,1.7],[0,50,200]],{name:'weight',snapWidth:1});
var w = brd.createElement('slider',[[24,0.92],[24,1.7],[0,50,200]],{name:'weight w',snapWidth:1});


f = function(x){ return (0.988+0.0104*x+0.00190*x*x-0.0000584*x*x*x); };
f = function(x){ return (0.988+0.0104*x+0.00190*x*x-0.0000584*x*x*x); };
Line 17: Line 25:
var t = brd.createElement('text',[function(){return r.X()+1;},  
var t = brd.createElement('text',[function(){return r.X()+1;},  
                                   function(){return r.Y();},  
                                   function(){return r.Y();},  
                                   function(){return "repetitions = " + Math.floor(r.X());}]);
                                   function(){return "repetitions r = " + Math.floor(r.X());}]);


brd.createElement('text',[5,1.6,  
brd.createElement('text',[5,1.6,  
Line 24: Line 32:


</jsxgraph>
</jsxgraph>
===References===
* W. Kemmler, D. Lauber, J. Mayhew, and A. Wassermann: "Predicting Maximal Strength in Trained Postmenopausal Woman",
''Journal of Strength and Conditioning Research'' 20(4), (2006), pp. 838-842.

Revision as of 13:38, 13 August 2009

This little application tries to predict the maximal strength (1RM) based on a repetitions to fatigue (RTF) value.

The calculation is based on the so called KLW formula:

[math]\displaystyle{ 1RM = w\cdot(0.988+0.0104\cdot x+0.00190\cdot x^2-0.0000584\cdot x^3) }[/math]

References

  • W. Kemmler, D. Lauber, J. Mayhew, and A. Wassermann: "Predicting Maximal Strength in Trained Postmenopausal Woman",

Journal of Strength and Conditioning Research 20(4), (2006), pp. 838-842.