Epidemiology: The SEIR model: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 112: Line 112:
}
}
</jsxgraph>
</jsxgraph>
===See also===
* [[Epidemiology: The SIR model]]
===References===
* [http://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology http://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology]
[[Category:Examples]]
[[Category:Turtle Graphics]]
[[Category:Calculus]]

Revision as of 08:08, 27 April 2009

For many important infections there is a significant period of time during which the individual has been infected but is not yet infectious himself. During this latent period the individual is in compartment E (for exposed).

Assuming that the period of staying in the latent state is a random variable with exponential distribution with parameter a (i.e. the average latent period is [math]\displaystyle{ a^{-1} }[/math]), and also assuming the presence of vital dynamics with birth rate equal to death rate, we have the model:

[math]\displaystyle{ \frac{dS}{dt} = \mu N - \mu S - \beta \frac{I}{N} S }[/math]
[math]\displaystyle{ \frac{dE}{dt} = \beta \frac{I}{N} S - (\mu +a ) E }[/math]
[math]\displaystyle{ \frac{dI}{dt} = a E - (\gamma +\mu ) I }[/math]
[math]\displaystyle{ \frac{dR}{dt} = \gamma I - \mu R. }[/math]

Of course, we have that [math]\displaystyle{ S+E+I+R=N }[/math].

The lines in the JSXGraph-simulation below have the following meaning:

* Blue: Rate of susceptible population
* Black: Rate of exposed population
* Red: Rate of infectious population
* Green: Rate of recovered population (which means: immune, isolated or dead)

See also

References