Population growth models: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>. | <math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>. | ||
With <math>\Delta \to 0</math> we get | With <math>\Delta \to 0</math> we get | ||
<math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>. | <math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>. | ||
The initial population is | The initial population is <math>y(0)= s</math>. | ||
The red line shows the exact solution of the differential equation <math>y(t)=s\cdot e^{\alpha x}</math>. | |||
The blue line is the simulation with <math>\Delta t = 0.1</math>. | |||
<html> | <html> | ||
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | <form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | ||
Line 18: | Line 21: | ||
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}]); | var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'}); | ||
t.hideTurtle(); | t.hideTurtle(); | ||
Line 48: | Line 51: | ||
} | } | ||
} | } | ||
</jsxgraph> | |||
===The JavaScript code=== | |||
<source lang="xml"> | |||
<jsxgraph height="500" width="600" board="board" box="box1"> | |||
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true}); | |||
var t = brd.createElement('turtle',[4,3,70]); | |||
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | |||
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | |||
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'}); | |||
t.hideTurtle(); | |||
function clearturtle() { | |||
t.cs(); | |||
t.ht(); | |||
} | |||
function run() { | |||
t.setPos(0,s.X()); | |||
t.setPenSize(4); | |||
delta = 0.1; // global | |||
x = 0.0; // global | |||
loop(); | |||
} | |||
function loop() { | |||
var y = alpha.X()*t.pos[1]; // Exponential growth | |||
t.moveTo([1.0+t.pos[0],y+t.pos[1]]); | |||
x += delta; | |||
if (x<10.0) { | |||
setTimeout(loop,50); | |||
} | |||
} | |||
</jsxgraph> | </jsxgraph> | ||
</source> | |||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Turtle Graphics]] | [[Category:Turtle Graphics]] |
Revision as of 16:11, 22 April 2009
Exponential population growth model
In time [math]\displaystyle{ \Delta y }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y }[/math].
With [math]\displaystyle{ \Delta \to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math].
The red line shows the exact solution of the differential equation [math]\displaystyle{ y(t)=s\cdot e^{\alpha x} }[/math]. The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].
The JavaScript code
<jsxgraph height="500" width="600" board="board" box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
t.hideTurtle();
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.X());
t.setPenSize(4);
delta = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var y = alpha.X()*t.pos[1]; // Exponential growth
t.moveTo([1.0+t.pos[0],y+t.pos[1]]);
x += delta;
if (x<10.0) {
setTimeout(loop,50);
}
}
</jsxgraph>