Discontinuous derivative: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 35: | Line 35: | ||
</math> | </math> | ||
<jsxgraph width="500" height="500"> | <jsxgraph width="500" height="500" box="jxgbox2"> | ||
var board = JXG.JSXGraph.initBoard(' | var board = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox:[-1/2,0.01,1.5,-0.005]}); | ||
//var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'}); | //var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'}); |
Revision as of 09:15, 13 February 2019
Consider the function (blue curve)
- [math]\displaystyle{ f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2\sin(1/x),& x\neq 0\\ 0,& x=0 \end{cases}\,. }[/math]
[math]\displaystyle{ f }[/math] is a continous and differentiable. The derivative of [math]\displaystyle{ f }[/math] is the function (red curve)
- [math]\displaystyle{ f': \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 2\sin(1/x) - \cos(1/x), &x \neq 0\\ 0,& x=0 \end{cases}\,. }[/math]
We observe that [math]\displaystyle{ f'(0) = 0 }[/math], but [math]\displaystyle{ \lim_{x\to0}f'(x) }[/math] does not exist.
Therefore, [math]\displaystyle{ f' }[/math] is an example of a derivative which is not continuous.
Here is another example:
- [math]\displaystyle{ g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2(1-x)^2\sin(1/(\pi x(1-x)),& 0\lt x\lt 1\\ 0,& \mbox{otherwise} \end{cases}\,. }[/math]
The underlying JavaScript code
First example:
var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});
var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});