Discontinuous derivative: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| Line 3: | Line 3: | ||
| \begin{cases} | \begin{cases} | ||
| x^2\sin(1/x),& x\neq 0\\ | x^2\sin(1/x),& x\neq 0\\ | ||
| 0, x=0 | 0,& x=0 | ||
| \end{cases}\,. | \end{cases}\,. | ||
| </math> | </math> | ||
| <math>f</math> is a continous and differentiable. | <math>f</math> is a continous and differentiable. | ||
| The derivative of <math>f</math> is the function | |||
| :<math> | :<math> | ||
| f': \mathbb{R} \to \mathbb{R}, x \mapsto | f': \mathbb{R} \to \mathbb{R}, x \mapsto | ||
| \begin{cases} | \begin{cases} | ||
| 2\sin(1/x) - \cos(1/x), &x \neq 0\\ | 2\sin(1/x) - \cos(1/x), &x \neq 0\\ | ||
| 0, x=0 | 0,& x=0 | ||
| \end{cases}\,. | \end{cases}\,. | ||
| </math> | </math> | ||
Revision as of 09:02, 13 February 2019
Consider the function
- [math]\displaystyle{ f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2\sin(1/x),& x\neq 0\\ 0,& x=0 \end{cases}\,. }[/math]
[math]\displaystyle{ f }[/math] is a continous and differentiable. The derivative of [math]\displaystyle{ f }[/math] is the function
- [math]\displaystyle{ f': \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 2\sin(1/x) - \cos(1/x), &x \neq 0\\ 0,& x=0 \end{cases}\,. }[/math]
We observe that [math]\displaystyle{ f'(0) = 0 }[/math] but [math]\displaystyle{ \lim_{x\to0}f'(x) }[/math] does not exist.
Therefore, [math]\displaystyle{ f' }[/math] is an example of a derivative which is not continuous.
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});
var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});
