Nowhere differentiable continuous function: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 57: | Line 57: | ||
this.n = N.Value(); | this.n = N.Value(); | ||
this.aa= a.Value(); | this.aa= a.Value(); | ||
this.bb = b.Value(); | this.bb = b.Value(); | ||
this.aArr = [1.0]; | |||
this.bArr = [1.0*Math.PI]; | |||
for (k=1; k<this.n; k++) { | |||
this.aArr[k] = this.aArr[k-1]*aa; | |||
this.bArr[k] = this.bArr[k-1]*bb; | |||
} | |||
} | } | ||
for (k=1; k<this.n; k++) { | for (k=1; k<this.n; k++) { | ||
s += | s += this.aArr[k]*Math.cos(this.bArr[k]*x); | ||
} | } | ||
return s; | return s; |
Revision as of 18:57, 22 September 2011
This page shows the graph of the nowhere differentiable, but continuos function
- [math]\displaystyle{ f(x) = \sum_{k=1}^{N} a^k\cos(b^k\pi x), }[/math]
where [math]\displaystyle{ 0\lt a\lt 1 }[/math] and [math]\displaystyle{ ab\gt 1+3/2\pi }[/math].
Reference
Wei-Chi Yang, "Technology has shaped up mathematics comunities", Proceedings of the Sixteenth Asian Technology Conference in Mathmatics (ATCM 16), pp 81-96.
The underlying JavaScript code
var bd = JXG.JSXGraph.initBoard('box', {axis:true, boundingbox: [-5, 3, 5, -3]});
var a = bd.create('slider', [[0.5,2],[2.5,2],[0,0.3,1]], {name:'a'});
var b = bd.create('slider', [[0.5,1.5],[2.5,1.5],[0,20,100]], {name:'b'});
var N = bd.create('slider', [[0.5,1.0],[2.5,1.0],[0,2,30]], {name:'N'});
var f = function(x){
var k, s=0.0, n = N.Value(), aa= a.Value(), bb = b.Value();
for (k=1; k<n; k++) {
s += Math.pow(aa,k)*Math.cos(Math.pow(bb,k)*Math.PI*x);
}
return s;
};
var c = bd.create('functiongraph', [f], {
doAdvancedPlot:false,
numberPointsHigh:15000, numberPointsLow:1000,
strokeWidth:1});