Tschirnhausen Cubic Catacaustic: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 29: Line 29:


var reflection = brd.create('line',
var reflection = brd.create('line',
      [reflectionpoint,
        function() { return [0,0]; }
      ],
      {strokeWidth:1, straightLast:first});
/*
       [
       [
         function(){
         function(){
Line 53: Line 59:
             return b*u*u-2*a*u*v-b*v*v;
             return b*u*u-2*a*u*v-b*v*v;
         }
         }
       ],{strokeWidth:1, straightLast:false});
       ],
 
*/
var cataustic = brd.create('curve',
var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                 [function(t){ return a.Value()*6*(t*t-1);},

Revision as of 14:01, 13 January 2011

The Tschirnhausen cubic (black curve) is defined parametrically as

[math]\displaystyle{ x = a3(t^2-3) }[/math]
[math]\displaystyle{ y = at(t^2-3) }[/math]

Its catcaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations

[math]\displaystyle{ x = a6(t^2-1) }[/math]
[math]\displaystyle{ y = a4t^3 }[/math]

References

The underlying JavaScript code

var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});

var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});

var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});

var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -4, 4
                 ],
                 {strokeWidth:1, strokeColor:'red'});
brd.unsuspendUpdate();