Polynomial curve of constant width: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
The curve defined by | |||
:<math> p(\phi) = a\cdot cos(k\cdot\phi/2)+b </math> | |||
in polar form is smooth and of constant width for odd values of <math>k</math>. | |||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-2,2,2,-2], keepaspectratio:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-2,2,2,-2], keepaspectratio:true}); | ||
Line 15: | Line 21: | ||
var co = Math.cos(kk*phi*0.5); | var co = Math.cos(kk*phi*0.5); | ||
return aa*co*co+bb; | return aa*co*co+bb; | ||
},[0,0], 0,Math.PI*2], {curveType:'polar', strokeWidth:6, strokeColor:'# | },[0,0], 0,Math.PI*2], {curveType:'polar', strokeWidth:6, strokeColor:'#ad5544'}); | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
</jsxgraph> | </jsxgraph> | ||
===References=== | |||
* [http://www.mathpropress.com/stan/bibliography/ Stanley Rabinowitz, A Polynomial Curve of Constant Width. Missouri Journal of Mathematical Sciences, 9(1997)23-27.] | |||
===The underlying JavaScript code=== | |||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-2,2,2,-2], keepaspectratio:true}); | |||
brd.suspendUpdate(); | |||
var a = brd.create('slider',[[-1,1.8],[1,1.8],[-5,0.20,5]], {name:'a'}); | |||
var b = brd.create('slider',[[-1,1.6],[1,1.6],[-5,1.15,10]], {name:'b'}); | |||
var k = brd.create('slider',[[-1,1.4],[1,1.4],[1,1,11]], {name:'k\'', snapWidth:1}); | |||
var p = brd.create('curve',[function(phi, suspendUpdate){ | |||
var kk, aa, bb; | |||
if (!suspendUpdate) { | |||
aa = a.Value(); | |||
bb = b.Value(); | |||
kk = 2*k.Value()+1; | |||
} | |||
var co = Math.cos(kk*phi*0.5); | |||
return aa*co*co+bb; | |||
},[0,0], 0,Math.PI*2], {curveType:'polar', strokeWidth:6, strokeColor:'#ad5544'}); | |||
brd.unsuspendUpdate(); | |||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Curves]] | [[Category:Curves]] |
Revision as of 14:39, 6 October 2010
The curve defined by
- [math]\displaystyle{ p(\phi) = a\cdot cos(k\cdot\phi/2)+b }[/math]
in polar form is smooth and of constant width for odd values of [math]\displaystyle{ k }[/math].
References
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-2,2,2,-2], keepaspectratio:true}); brd.suspendUpdate(); var a = brd.create('slider',[[-1,1.8],[1,1.8],[-5,0.20,5]], {name:'a'}); var b = brd.create('slider',[[-1,1.6],[1,1.6],[-5,1.15,10]], {name:'b'}); var k = brd.create('slider',[[-1,1.4],[1,1.4],[1,1,11]], {name:'k\, snapWidth:1});
var p = brd.create('curve',[function(phi, suspendUpdate){
var kk, aa, bb; if (!suspendUpdate) { aa = a.Value(); bb = b.Value(); kk = 2*k.Value()+1; } var co = Math.cos(kk*phi*0.5); return aa*co*co+bb; },[0,0], 0,Math.PI*2], {curveType:'polar', strokeWidth:6, strokeColor:'#ad5544'});
brd.unsuspendUpdate();