Systems of differential equations: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 2: Line 2:
:<math> y_1'= f_1(x,y_1,y_2)</math>
:<math> y_1'= f_1(x,y_1,y_2)</math>
:<math> y_2'= f_2(x,y_1,y_2)</math>
:<math> y_2'= f_2(x,y_1,y_2)</math>
with initial values <math>(x_0,y_1)</math>, <math>(x_0,y_2)</math>.
with initial values <math>(x_0,c_1)</math>, <math>(x_0,c_2)</math>.
<html>
<html>
<form>
<form>
Line 12: Line 12:
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var P1 = brd.create('point',[0,1], {name:'(x_0,y_1)'});
var P1 = brd.create('point',[0,1], {name:'(x_0,c_1)'});
var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false});
var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false});
var P2 = brd.create('glider',[0,2,line], {name:'(x_0,y_2)'});
var P2 = brd.create('glider',[0,2,line], {name:'(x_0,c_2)'});


function doIt() {
function doIt() {
Line 27: Line 27:
}
}


var g1 = brd.createElement('curve', [[0],[0]], {strokeColor:'red', strokeWidth:'2px', name:'y_1'});
var g1 = brd.createElement('curve', [[0],[0]], {strokeColor:'red', strokeWidth:'2px', name:'y_1', withLabel:true});
var g2 = brd.createElement('curve', [[0],[0]], {strokeColor:'black', strokeWidth:'2px', name:'y_2'});
var g2 = brd.createElement('curve', [[0],[0]], {strokeColor:'black', strokeWidth:'2px', name:'y_2', withLabel:true});
g1.updateDataArray = function() {
g1.updateDataArray = function() {
     var data = ode();
     var data = ode();

Revision as of 08:52, 21 July 2010

Display solutions of the ordinary differential equation

[math]\displaystyle{ y_1'= f_1(x,y_1,y_2) }[/math]
[math]\displaystyle{ y_2'= f_2(x,y_1,y_2) }[/math]

with initial values [math]\displaystyle{ (x_0,c_1) }[/math], [math]\displaystyle{ (x_0,c_2) }[/math].

f1(x,y1,y2)=
f2(x,y1,y2)=