Differential equations: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 14: | Line 14: | ||
function doIt() { | function doIt() { | ||
var txt = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput").value); | var txt = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput").value); | ||
f = new Function(" | f = new Function("x", "yy", "var y = yy[0]; var z = " + txt + "; return [z]"); | ||
brd.update(); | brd.update(); | ||
} | } | ||
Line 56: | Line 56: | ||
function doIt() { | function doIt() { | ||
var txt = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput").value); | var txt = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput").value); | ||
f = new Function(" | f = new Function("x", "yy", "var y = yy[0]; var z = " + txt + "; return [z]"); | ||
brd.update(); | brd.update(); | ||
} | } |
Revision as of 10:29, 15 July 2010
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y'= f(x,y) }[/math]
with initial value [math]\displaystyle{ (x_0,y_0) }[/math].
See also
- Lotka-Volterra equations
- Epidemiology: The SIR model
- Population growth models
- Autocatalytic process
- Logistic process
The underlying JavaScript code
<form>
f(x,y)=<input type="text" id="odeinput" value="(2-x)*y"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var P = brd.create('point',[0,1], {name:'(x_0,y_0)'});
function doIt() {
var txt = JXG.GeonextParser.geonext2JS(document.getElementById("odeinput").value);
f = new Function("x", "yy", "var y = yy[0]; var z = " + txt + "; return [z]");
brd.update();
}
function ode() {
return JXG.Math.Numerics.rungeKutta(JXG.Math.Numerics.predefinedButcher.Heun, [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
var g = brd.createElement('curve', [[0],[0]], {strokeColor:'red', strokeWidth:'2px'});
g.updateDataArray = function() {
var data = ode();
var h = N.Value()/200;
this.dataX = [];
this.dataY = [];
for(var i=0; i<data.length; i++) {
this.dataX[i] = P.X()+i*h;
this.dataY[i] = data[i][0];
}
};
doIt();