Population growth models: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 43: | Line 43: | ||
function loop() { | function loop() { | ||
var y = alpha.X()*t.pos[1]; // Exponential growth | var y = alpha.X()*t.pos[1]; // Exponential growth | ||
//var y = alpha.X()*t.pos[1]*(A-t.pos[1]); // | //var y = alpha.X()*t.pos[1]*(A-t.pos[1]); // Autocatalytic process | ||
//var y = (alpha.X()*t.pos[1]-tau*t.pos[1]*t.pos[1]); // Logistic process | //var y = (alpha.X()*t.pos[1]-tau*t.pos[1]*t.pos[1]); // Logistic process | ||
t.moveTo([1.0+t.pos[0],y+t.pos[1]]); | t.moveTo([1.0+t.pos[0],y+t.pos[1]]); | ||
Line 52: | Line 52: | ||
} | } | ||
</jsxgraph> | </jsxgraph> | ||
* [[Autocatalytic process]] | |||
* [[Logistic process]] | |||
===The JavaScript code=== | ===The JavaScript code=== |
Revision as of 12:42, 23 April 2009
Exponential population growth model
In time [math]\displaystyle{ \Delta y }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y }[/math].
With [math]\displaystyle{ \Delta \to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math].
The red line shows the exact solution of the differential equation [math]\displaystyle{ y(t)=s\cdot e^{\alpha x} }[/math]. The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].
The JavaScript code
<jsxgraph height="500" width="600" board="board" box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
t.hideTurtle();
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.X());
t.setPenSize(4);
delta = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var y = alpha.X()*t.pos[1]; // Exponential growth
t.moveTo([1.0+t.pos[0],y+t.pos[1]]);
x += delta;
if (x<10.0) {
setTimeout(loop,50);
}
}
</jsxgraph>