Discontinuous derivative: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (24 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
Consider the function (blue curve)  | |||
:<math> f: \mathbb{R} \to \mathbb{R}, x \mapsto   | |||
\begin{cases}  | |||
x^2\sin(1/x),& x\neq 0,\\  | |||
0,& x=0\,.  | |||
\end{cases}  | |||
</math>  | |||
<math>f</math> is a continous and differentiable function.  | |||
The derivative of <math>f</math> is the function (red curve)  | |||
:<math>  | |||
f': \mathbb{R} \to \mathbb{R}, x \mapsto  | |||
\begin{cases}  | |||
2x\sin(1/x) - \cos(1/x), &x \neq 0,\\  | |||
0,& x=0\,.  | |||
\end{cases}  | |||
</math>  | |||
We observe that <math>f'(0) = 0</math>, but <math>\lim_{x\to0}f'(x)</math> does not exist.  | |||
Therefore, <math>f'</math> is an example of a derivative which is not continuous.  | |||
<jsxgraph width="500" height="500">  | <jsxgraph width="500" height="500">  | ||
var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});  | var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});  | ||
var f = board.create('functiongraph', ["x^2*sin(1/x)"]);  | var g = board.create('functiongraph', ["2*x*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});  | ||
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});  | |||
</jsxgraph>  | |||
Here is another example:  | |||
:<math>  | |||
g: \mathbb{R} \to \mathbb{R}, x \mapsto  | |||
\begin{cases}  | |||
x^2(1-x)^2\sin(1/(\pi x(1-x)),& 0 < x < 1\\  | |||
0,& \mbox{otherwise}  | |||
\end{cases}\,.  | |||
</math>  | |||
<jsxgraph width="500" height="500" box="jxgbox2">  | |||
var board = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox:[-1/2,0.08,1.5,-0.02]});  | |||
var g_der = board.create('functiongraph', ["(0 < x && x < 1) ? ((sin((1 / ((PI * x) * (1 - x)))) * ((2 * (x * ((1 - x)^2))) - (2 * ((x^2) * (1 - x))))) - (((x^2) * ((1 - x)^2)) * (cos((1 / ((PI * x) * (1 - x)))) * (((PI * (1 - x)) - (PI * x)) / (((PI * x) * (1 - x))^2))))) : 0"], {strokeColor: 'red'});  | |||
var g = board.create('functiongraph', ["(0 < x && x < 1) ? x^2*(1-x)^2*sin(1/(PI* x*(1-x))) : 0"], {strokeWidth:2});  | |||
</jsxgraph>  | </jsxgraph>  | ||
===The underlying JavaScript code===  | ===The underlying JavaScript code===  | ||
First example:  | |||
<source lang="javascript">  | |||
var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});  | |||
var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});  | |||
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});  | |||
</source>  | |||
Second example:  | |||
<source lang="javascript">  | <source lang="javascript">  | ||
var board = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox:[-1/2,0.08,1.5,-0.02]});  | |||
var g_der = board.create('functiongraph', ["(0 < x && x < 1) ? ((sin((1 / ((PI * x) * (1 - x)))) * ((2 * (x * ((1 - x)^2))) - (2 * ((x^2) * (1 - x))))) - (((x^2) * ((1 - x)^2)) * (cos((1 / ((PI * x) * (1 - x)))) * (((PI * (1 - x)) - (PI * x)) / (((PI * x) * (1 - x))^2))))) : 0"], {strokeColor: 'red'});  | |||
var g = board.create('functiongraph', ["(0 < x && x < 1) ? x^2*(1-x)^2*sin(1/(PI* x*(1-x))) : 0"], {strokeWidth:2});  | |||
</source>  | </source>  | ||
[[Category:Examples]]  | [[Category:Examples]]  | ||
[[Category:Calculus]]  | [[Category:Calculus]]  | ||
Latest revision as of 21:01, 23 March 2021
Consider the function (blue curve)
- [math]\displaystyle{ f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2\sin(1/x),& x\neq 0,\\ 0,& x=0\,. \end{cases} }[/math]
 
[math]\displaystyle{ f }[/math] is a continous and differentiable function. The derivative of [math]\displaystyle{ f }[/math] is the function (red curve)
- [math]\displaystyle{ f': \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 2x\sin(1/x) - \cos(1/x), &x \neq 0,\\ 0,& x=0\,. \end{cases} }[/math]
 
We observe that [math]\displaystyle{ f'(0) = 0 }[/math], but [math]\displaystyle{ \lim_{x\to0}f'(x) }[/math] does not exist.
Therefore, [math]\displaystyle{ f' }[/math] is an example of a derivative which is not continuous.
Here is another example:
- [math]\displaystyle{ g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2(1-x)^2\sin(1/(\pi x(1-x)),& 0 \lt x \lt 1\\ 0,& \mbox{otherwise} \end{cases}\,. }[/math]
 
The underlying JavaScript code
First example:
var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});
var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});
Second example:
var board = JXG.JSXGraph.initBoard('jxgbox2', {axis:true, boundingbox:[-1/2,0.08,1.5,-0.02]});
var g_der = board.create('functiongraph', ["(0 < x && x < 1) ? ((sin((1 / ((PI * x) * (1 - x)))) * ((2 * (x * ((1 - x)^2))) - (2 * ((x^2) * (1 - x))))) - (((x^2) * ((1 - x)^2)) * (cos((1 / ((PI * x) * (1 - x)))) * (((PI * (1 - x)) - (PI * x)) / (((PI * x) * (1 - x))^2))))) : 0"], {strokeColor: 'red'});
var g = board.create('functiongraph', ["(0 < x && x < 1) ? x^2*(1-x)^2*sin(1/(PI* x*(1-x))) : 0"], {strokeWidth:2});