Systems of differential equations: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(15 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Display solutions of the ordinary differential equation | Display solutions of the ordinary differential equation | ||
:<math> | :<math> y_1'= f_1(x,y_1,y_2)</math> | ||
with initial | :<math> y_2'= f_2(x,y_1,y_2)</math> | ||
with initial values <math>(x_0,c_1)</math>, <math>(x_0,c_2)</math>. | |||
<html> | <html> | ||
<form> | <form> | ||
f<sub>1</sub>(x, | f<sub>1</sub>(x,y1,y2)=<input type="text" id="odeinput1" value="y1+y2"><br /> | ||
f<sub>2</sub>(x, | f<sub>2</sub>(x,y1,y2)=<input type="text" id="odeinput2" value="y2+1"><input type=button value="ok" onclick="doIt()"> | ||
</form> | </form> | ||
</html> | </html> | ||
Line 11: | Line 12: | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
var P1 = brd.create('point',[ | var P1 = brd.create('point',[1,-1], {name:'(x_0,c_1)'}); | ||
var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | ||
var P2 = brd.create('glider',[0 | var P2 = brd.create('glider',[1,-0.5,line], {name:'(x_0,c_2)'}); | ||
function doIt() { | function doIt() { | ||
var | var txt1 = document.getElementById("odeinput1").value; | ||
f = | var txt2 = document.getElementById("odeinput2").value; | ||
var snip1 = brd.jc.snippet(txt1, true, 'x, y1, y2'); | |||
var snip2 = brd.jc.snippet(txt2, true, 'x, y1, y2'); | |||
f = function (x, yy) { | |||
return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])]; | |||
} | |||
brd.update(); | brd.update(); | ||
} | } | ||
function ode() { | function ode() { | ||
return JXG.Math.Numerics.rungeKutta( | return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f); | ||
} | } | ||
var | var g1 = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2, name:'y_1', withLabel:false}); | ||
var g2 = brd.create('curve', [[0],[0]], {strokeColor:'black', strokeWidth:2, name:'y_2', withLabel:false}); | |||
g1.updateDataArray = function() { | |||
var data = ode(); | var data = ode(); | ||
var h = N.Value()/200; | var h = N.Value()/200; | ||
var i; | |||
this.dataX = []; | this.dataX = []; | ||
this.dataY = []; | this.dataY = []; | ||
for( | for(i=0; i<data.length; i++) { | ||
this.dataX[i] = P1.X()+i*h; | this.dataX[i] = P1.X()+i*h; | ||
this.dataY[i] = data[i][0]; | this.dataY[i] = data[i][0]; | ||
} | |||
}; | |||
g2.updateDataArray = function() { | |||
var data = ode(); | |||
var h = N.Value()/200; | |||
var i; | |||
this.dataX = []; | |||
this.dataY = []; | |||
for(i=0; i<data.length; i++) { | |||
this.dataX[i] = P2.X()+i*h; | |||
this.dataY[i] = data[i][1]; | |||
} | } | ||
}; | }; | ||
doIt(); | doIt(); | ||
</jsxgraph> | </jsxgraph> | ||
===See also=== | |||
* [[Differential equations]] | |||
* [[Lotka-Volterra equations]] | |||
* [[Epidemiology: The SIR model]] | |||
* [[Population growth models]] | |||
* [[Autocatalytic process]] | |||
* [[Logistic process]] | |||
===The underlying JavaScript code=== | |||
<source lang="xml"> | |||
<form> | |||
f<sub>1</sub>(x,y1,y2)=<input type="text" id="odeinput1" value="y1+y2"><br /> | |||
f<sub>2</sub>(x,y1,y2)=<input type="text" id="odeinput2" value="y2+1"><input type=button value="ok" onclick="doIt()"> | |||
</form> | |||
</source> | |||
<source lang="javascript"> | |||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | |||
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | |||
var P1 = brd.create('point',[1,-1], {name:'(x_0,c_1)'}); | |||
var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | |||
var P2 = brd.create('glider',[1,-0.5,line], {name:'(x_0,c_2)'}); | |||
function doIt() { | |||
var txt1 = document.getElementById("odeinput1").value; | |||
var txt2 = document.getElementById("odeinput2").value; | |||
var snip1 = brd.jc.snippet(txt1, true, 'x, y1, y2'); | |||
var snip2 = brd.jc.snippet(txt2, true, 'x, y1, y2'); | |||
f = function (x, yy) { | |||
return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])]; | |||
} | |||
brd.update(); | |||
} | |||
function ode() { | |||
return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f); | |||
} | |||
var g1 = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2, name:'y_1', withLabel:false}); | |||
var g2 = brd.create('curve', [[0],[0]], {strokeColor:'black', strokeWidth:2, name:'y_2', withLabel:false}); | |||
g1.updateDataArray = function() { | |||
var data = ode(); | |||
var h = N.Value()/200; | |||
var i; | |||
this.dataX = []; | |||
this.dataY = []; | |||
for(i=0; i<data.length; i++) { | |||
this.dataX[i] = P1.X()+i*h; | |||
this.dataY[i] = data[i][0]; | |||
} | |||
}; | |||
g2.updateDataArray = function() { | |||
var data = ode(); | |||
var h = N.Value()/200; | |||
var i; | |||
this.dataX = []; | |||
this.dataY = []; | |||
for(i=0; i<data.length; i++) { | |||
this.dataX[i] = P2.X()+i*h; | |||
this.dataY[i] = data[i][1]; | |||
} | |||
}; | |||
doIt(); | |||
</source> | |||
[[Category:Examples]] | |||
[[Category:Calculus]] |
Latest revision as of 11:34, 19 January 2017
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y_1'= f_1(x,y_1,y_2) }[/math]
- [math]\displaystyle{ y_2'= f_2(x,y_1,y_2) }[/math]
with initial values [math]\displaystyle{ (x_0,c_1) }[/math], [math]\displaystyle{ (x_0,c_2) }[/math].
See also
- Differential equations
- Lotka-Volterra equations
- Epidemiology: The SIR model
- Population growth models
- Autocatalytic process
- Logistic process
The underlying JavaScript code
<form>
f<sub>1</sub>(x,y1,y2)=<input type="text" id="odeinput1" value="y1+y2"><br />
f<sub>2</sub>(x,y1,y2)=<input type="text" id="odeinput2" value="y2+1"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var P1 = brd.create('point',[1,-1], {name:'(x_0,c_1)'});
var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false});
var P2 = brd.create('glider',[1,-0.5,line], {name:'(x_0,c_2)'});
function doIt() {
var txt1 = document.getElementById("odeinput1").value;
var txt2 = document.getElementById("odeinput2").value;
var snip1 = brd.jc.snippet(txt1, true, 'x, y1, y2');
var snip2 = brd.jc.snippet(txt2, true, 'x, y1, y2');
f = function (x, yy) {
return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])];
}
brd.update();
}
function ode() {
return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f);
}
var g1 = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2, name:'y_1', withLabel:false});
var g2 = brd.create('curve', [[0],[0]], {strokeColor:'black', strokeWidth:2, name:'y_2', withLabel:false});
g1.updateDataArray = function() {
var data = ode();
var h = N.Value()/200;
var i;
this.dataX = [];
this.dataY = [];
for(i=0; i<data.length; i++) {
this.dataX[i] = P1.X()+i*h;
this.dataY[i] = data[i][0];
}
};
g2.updateDataArray = function() {
var data = ode();
var h = N.Value()/200;
var i;
this.dataX = [];
this.dataY = [];
for(i=0; i<data.length; i++) {
this.dataX[i] = P2.X()+i*h;
this.dataY[i] = data[i][1];
}
};
doIt();