Differential equations: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
 
(44 intermediate revisions by the same user not shown)
Line 1: Line 1:
Display solutions of the ordinary differential equation
:<math> y'= f(t,y)</math>
with initial value <math>(t_0,y_0)</math>.
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is <math>c</math>.
<html>
<form>
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
</html>
<jsxgraph width="500" height="500">
<jsxgraph width="500" height="500">
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-5,5,5,-5]});
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var P = brd.create('point',[0,0], {name:'x_0'});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var f = function(t,x) {
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
      return [3*x[0]];
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'});
    };
var f;
 
function doIt() {
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y');
  f = function (t, yy) {
      return [snip(t, yy[0])];
  }
  brd.update();
}


function ode() {
function ode() {
   return JXG.Math.Numerics.rungeKutta(JXG.Math.Numerics.predefinedButcher.Heun, [P.Y()], [0, 2], 20, f);
   return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
}


var g = brd.createElement('curve', [[0],[0]], {strokeColor:'red', strokeWidth:'2px'});
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
g.updateDataArray = function() {
     var data = ode();
     var data = ode();
     var h = 0.1;
     var h = N.Value()/200;
    var i;
     this.dataX = [];
     this.dataX = [];
     this.dataY = [];
     this.dataY = [];
     for(var i=0; i<data.length; i++) {
     for(i=0; i<data.length; i++) {
         this.dataX[i] = i*h;
         this.dataX[i] = P.X()+i*h;
         this.dataY[i] = data[i][0];
         this.dataY[i] = data[i][0];
     }
     }
};
};
doIt();
</jsxgraph>
</jsxgraph>
===See also===
* [[Systems of differential equations]]
* [[Lotka-Volterra equations]]
* [[Epidemiology: The SIR model]]
* [[Population growth models]]
* [[Autocatalytic process]]
* [[Logistic process]]


===The underlying JavaScript code===
===The underlying JavaScript code===
<source lang="xml">
<form>
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
</source>
<source lang="javascript">
<source lang="javascript">
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'});
var f;
function doIt() {
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y');
  f = function (t, yy) {
      return [snip(t, yy[0])];
  }
  brd.update();
}
function ode() {
  return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
    var data = ode();
    var h = N.Value()/200;
    var i;
    this.dataX = [];
    this.dataY = [];
    for(i=0; i<data.length; i++) {
        this.dataX[i] = P.X()+i*h;
        this.dataY[i] = data[i][0];
    }
};
doIt();
</source>
</source>


[[Category:Examples]]
[[Category:Examples]]
[[Category:Calculus]]
[[Category:Calculus]]

Latest revision as of 08:46, 18 December 2020

Display solutions of the ordinary differential equation

[math]\displaystyle{ y'= f(t,y) }[/math]

with initial value [math]\displaystyle{ (t_0,y_0) }[/math].

It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is [math]\displaystyle{ c }[/math].

f(t,y)=

See also

The underlying JavaScript code

<form>
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'});
var f;

function doIt() {
  var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y');
  f = function (t, yy) {
      return [snip(t, yy[0])];
  }
  brd.update();
}

function ode() {
   return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}

var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
    var data = ode();
    var h = N.Value()/200;
    var i;
    this.dataX = [];
    this.dataY = [];
    for(i=0; i<data.length; i++) {
        this.dataX[i] = P.X()+i*h;
        this.dataY[i] = data[i][0];
    }
};
doIt();