Differential equations: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(45 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Display solutions of the ordinary differential equation | |||
:<math> y'= f(t,y)</math> | |||
with initial value <math>(t_0,y_0)</math>. | |||
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is <math>c</math>. | |||
<html> | |||
<form> | |||
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()"> | |||
</form> | |||
</html> | |||
<jsxgraph width="500" height="500"> | <jsxgraph width="500" height="500"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-5,5, | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
var P = brd.create('point',[0, | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
var f = function(t, | var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'}); | ||
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'}); | |||
var f; | |||
function doIt() { | |||
var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y'); | |||
f = function (t, yy) { | |||
return [snip(t, yy[0])]; | |||
} | |||
brd.update(); | |||
} | |||
function ode() { | function ode() { | ||
return JXG.Math.Numerics.rungeKutta( | return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f); | ||
} | } | ||
var g = brd. | var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2}); | ||
g.updateDataArray = function() { | g.updateDataArray = function() { | ||
var data = ode(); | var data = ode(); | ||
var h = | var h = N.Value()/200; | ||
var i; | |||
this.dataX = []; | this.dataX = []; | ||
this.dataY = []; | this.dataY = []; | ||
for( | for(i=0; i<data.length; i++) { | ||
this.dataX[i] = i*h; | this.dataX[i] = P.X()+i*h; | ||
this.dataY[i] = data[i][0]; | this.dataY[i] = data[i][0]; | ||
} | } | ||
}; | }; | ||
doIt(); | |||
</jsxgraph> | </jsxgraph> | ||
===See also=== | |||
* [[Systems of differential equations]] | |||
* [[Lotka-Volterra equations]] | |||
* [[Epidemiology: The SIR model]] | |||
* [[Population growth models]] | |||
* [[Autocatalytic process]] | |||
* [[Logistic process]] | |||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
<source lang="xml"> | |||
<form> | |||
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()"> | |||
</form> | |||
</source> | |||
<source lang="javascript"> | <source lang="javascript"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | |||
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | |||
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'}); | |||
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'}); | |||
var f; | |||
function doIt() { | |||
var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y'); | |||
f = function (t, yy) { | |||
return [snip(t, yy[0])]; | |||
} | |||
brd.update(); | |||
} | |||
function ode() { | |||
return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f); | |||
} | |||
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2}); | |||
g.updateDataArray = function() { | |||
var data = ode(); | |||
var h = N.Value()/200; | |||
var i; | |||
this.dataX = []; | |||
this.dataY = []; | |||
for(i=0; i<data.length; i++) { | |||
this.dataX[i] = P.X()+i*h; | |||
this.dataY[i] = data[i][0]; | |||
} | |||
}; | |||
doIt(); | |||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Calculus]] | [[Category:Calculus]] |
Latest revision as of 08:46, 18 December 2020
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y'= f(t,y) }[/math]
with initial value [math]\displaystyle{ (t_0,y_0) }[/math].
It is easy to incorporate sliders: give the slider a (unique) name and use this name in the equation. In the example below, the slider name is [math]\displaystyle{ c }[/math].
See also
- Systems of differential equations
- Lotka-Volterra equations
- Epidemiology: The SIR model
- Population growth models
- Autocatalytic process
- Logistic process
The underlying JavaScript code
<form>
f(t,y)=<input type="text" id="odeinput" value="(2-t)*y + c"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var slider = brd.create('slider',[[-7,8],[7,8],[-15,0,15]], {name:'c'});
var P = brd.create('point',[0,1], {name:'(t_0, y_0)'});
var f;
function doIt() {
var snip = brd.jc.snippet(document.getElementById("odeinput").value, true, 't, y');
f = function (t, yy) {
return [snip(t, yy[0])];
}
brd.update();
}
function ode() {
return JXG.Math.Numerics.rungeKutta('heun', [P.Y()], [P.X(), P.X()+N.Value()], 200, f);
}
var g = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2});
g.updateDataArray = function() {
var data = ode();
var h = N.Value()/200;
var i;
this.dataX = [];
this.dataY = [];
for(i=0; i<data.length; i++) {
this.dataX[i] = P.X()+i*h;
this.dataY[i] = data[i][0];
}
};
doIt();