Population growth models: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary |
No edit summary |
||
(13 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
===Exponential population growth model=== | ===Exponential population growth model=== | ||
In time <math> \Delta | In time <math> \Delta t</math> the population consisting of <math>y</math> elements grows by <math>\alpha\cdot y </math> elements: | ||
<math> \Delta y = \alpha\cdot y\cdot \Delta t </math>, that is | <math> \Delta y = \alpha\cdot y\cdot \Delta t </math>, that is | ||
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>. | <math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>. | ||
With <math>\Delta \to 0</math> we get | With <math>\Delta t\to 0</math> we get | ||
<math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>. | <math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>. | ||
The initial population is <math>y(0)= s</math>. | The initial population is <math>y(0)= s</math>. | ||
The red line shows the exact solution of the differential equation <math>y(t)=s\cdot e^{\alpha | The red line shows the exact solution of the differential equation <math>y(t)=s\cdot e^{\alpha t}</math>. | ||
The blue line is the simulation with <math>\Delta t = 0.1</math>. | The blue line is the simulation with <math>\Delta t = 0.1</math>. | ||
<html> | <html> | ||
Line 16: | Line 16: | ||
<jsxgraph height="500" width="600" board="board" box="box1"> | <jsxgraph height="500" width="600" board="board" box="box1"> | ||
brd = JXG.JSXGraph.initBoard('box1', { | var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true}); | ||
var t = brd. | var t = brd.create('turtle',[4,3,70]); | ||
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | |||
var s = brd. | var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
var alpha = brd. | var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'}); | ||
var e = brd. | |||
t.hideTurtle(); | t.hideTurtle(); | ||
A = 5; | var A = 5; | ||
tau = 0.3; | var tau = 0.3; | ||
function clearturtle() { | function clearturtle() { | ||
Line 34: | Line 33: | ||
function run() { | function run() { | ||
t.setPos(0,s. | t.setPos(0,s.Value()); | ||
t.setPenSize(4); | t.setPenSize(4); | ||
dx = 0.1; // global | |||
x = 0.0; // global | x = 0.0; // global | ||
loop(); | loop(); | ||
Line 42: | Line 41: | ||
function loop() { | function loop() { | ||
var | var dy = alpha.Value()*t.Y()*dx; // Exponential growth | ||
t.moveTo([dx+t.X(),dy+t.Y()]); | |||
// | x += dx; | ||
t.moveTo([ | if (x<20.0) { | ||
x += | setTimeout(loop,10); | ||
if (x< | |||
setTimeout(loop, | |||
} | } | ||
} | } | ||
</jsxgraph> | </jsxgraph> | ||
===Other models=== | |||
* [[Autocatalytic process]] | * [[Autocatalytic process]] | ||
Line 57: | Line 56: | ||
===The JavaScript code=== | ===The JavaScript code=== | ||
<source lang=" | <source lang="javascript"> | ||
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true}); | |||
brd = JXG.JSXGraph.initBoard('box1', { | var t = brd.create('turtle',[4,3,70]); | ||
var t = brd. | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | |||
var s = brd. | var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'}); | ||
var alpha = brd. | |||
var e = brd. | |||
t.hideTurtle(); | t.hideTurtle(); | ||
var A = 5; | |||
var tau = 0.3; | |||
function clearturtle() { | function clearturtle() { | ||
Line 74: | Line 74: | ||
function run() { | function run() { | ||
t.setPos(0,s. | t.setPos(0,s.Value()); | ||
t.setPenSize(4); | t.setPenSize(4); | ||
dx = 0.1; // global | |||
x = 0.0; // global | x = 0.0; // global | ||
loop(); | loop(); | ||
Line 82: | Line 82: | ||
function loop() { | function loop() { | ||
var | var dy = alpha.Value()*t.Y()*dx; // Exponential growth | ||
t.moveTo([ | t.moveTo([dx+t.X(),dy+t.Y()]); | ||
x += | x += dx; | ||
if (x< | if (x<20.0) { | ||
setTimeout(loop, | setTimeout(loop,10); | ||
} | } | ||
} | } | ||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Turtle Graphics]] | [[Category:Turtle Graphics]] | ||
[[Category:Calculus]] |
Latest revision as of 11:50, 8 June 2011
Exponential population growth model
In time [math]\displaystyle{ \Delta t }[/math] the population consisting of [math]\displaystyle{ y }[/math] elements grows by [math]\displaystyle{ \alpha\cdot y }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y }[/math].
With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math].
The red line shows the exact solution of the differential equation [math]\displaystyle{ y(t)=s\cdot e^{\alpha t} }[/math]. The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].
Other models
The JavaScript code
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true});
var t = brd.create('turtle',[4,3,70]);
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});
t.hideTurtle();
var A = 5;
var tau = 0.3;
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.Value());
t.setPenSize(4);
dx = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var dy = alpha.Value()*t.Y()*dx; // Exponential growth
t.moveTo([dx+t.X(),dy+t.Y()]);
x += dx;
if (x<20.0) {
setTimeout(loop,10);
}
}