Mean Value Theorem: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (9 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| < | <jsxgraph width="600" height="400" box="box"> | ||
| var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true}); | |||
| board.suspendUpdate(); | board.suspendUpdate(); | ||
| var p = []; | |||
| p[0] = board.create('point', [-1,-2], {size:2}); | |||
| p[1] = board.create('point', [6,5], {size:2}); | |||
| p[2] = board.create('point', [-0.5,1], {size:2}); | |||
| p[3] = board.create('point', [3,3], {size:2}); | |||
| var f = JXG.Math.Numerics.lagrangePolynomial(p); | |||
| var graph = board.create('functiongraph', [f,-10, 10]); | |||
| var g = function(x) { | |||
|      return JXG.Math.Numerics.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X()); | |||
| }; | |||
| var r = board.create('glider', [ | |||
|                      function() { return JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5); }, | |||
|                      function() { return f(JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5)); }, | |||
|                      graph], {name:' ',size:4,fixed:true}); | |||
| board.create('tangent', [r], {strokeColor:'#ff0000'}); | |||
|                      function() { return  | line = board.create('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1}); | ||
|                      function() { return f( | |||
|                      ], {name:' ', | |||
| line = board. | |||
| board.unsuspendUpdate(); | board.unsuspendUpdate(); | ||
| </ | </jsxgraph> | ||
| ===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
| <source lang="javascript"> | <source lang="javascript"> | ||
| var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true}); | |||
| board.suspendUpdate(); | board.suspendUpdate(); | ||
| var p = []; | |||
| p[0] = board.create('point', [-1,-2], {size:2}); | |||
| p[1] = board.create('point', [6,5], {size:2}); | |||
| p[2] = board.create('point', [-0.5,1], {size:2}); | |||
| p[3] = board.create('point', [3,3], {size:2}); | |||
| var f = JXG.Math.Numerics.lagrangePolynomial(p); | |||
| var graph = board.create('functiongraph', [f,-10, 10]); | |||
| var g = function(x) { | |||
|      return JXG.Math.Numerics.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X()); | |||
| }; | |||
| var r = board.create('glider', [ | |||
| line = board. |                     function() { return JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5); }, | ||
|                     function() { return f(JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5)); }, | |||
|                     graph], {name:' ',size:4,fixed:true}); | |||
| board.create('tangent', [r], {strokeColor:'#ff0000'}); | |||
| line = board.create('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1}); | |||
| board.unsuspendUpdate(); | board.unsuspendUpdate(); | ||
Latest revision as of 15:29, 20 February 2013
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});
board.suspendUpdate();
var p = [];
p[0] = board.create('point', [-1,-2], {size:2});
p[1] = board.create('point', [6,5], {size:2});
p[2] = board.create('point', [-0.5,1], {size:2});
p[3] = board.create('point', [3,3], {size:2});
var f = JXG.Math.Numerics.lagrangePolynomial(p);
var graph = board.create('functiongraph', [f,-10, 10]);
var g = function(x) {
     return JXG.Math.Numerics.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X());
};
var r = board.create('glider', [
                    function() { return JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5); },
                    function() { return f(JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5)); },
                    graph], {name:' ',size:4,fixed:true});
board.create('tangent', [r], {strokeColor:'#ff0000'});
line = board.create('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1});
board.unsuspendUpdate();
