Mean Value Theorem: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
(10 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
< | <jsxgraph width="600" height="400" box="box"> | ||
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true}); | |||
board.suspendUpdate(); | board.suspendUpdate(); | ||
var p = []; | |||
p[0] = board.create('point', [-1,-2], {size:2}); | |||
p[1] = board.create('point', [6,5], {size:2}); | |||
p[2] = board.create('point', [-0.5,1], {size:2}); | |||
p[3] = board.create('point', [3,3], {size:2}); | |||
var f = JXG.Math.Numerics.lagrangePolynomial(p); | |||
var graph = board.create('functiongraph', [f,-10, 10]); | |||
var g = function(x) { | |||
return JXG.Math.Numerics.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X()); | |||
}; | |||
var r = board.create('glider', [ | |||
function() { return JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5); }, | |||
function() { return f(JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5)); }, | |||
graph], {name:' ',size:4,fixed:true}); | |||
board.create('tangent', [r], {strokeColor:'#ff0000'}); | |||
function() { return | line = board.create('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1}); | ||
function() { return f( | |||
], {name:' ', | |||
line = board. | |||
board.unsuspendUpdate(); | board.unsuspendUpdate(); | ||
</ | </jsxgraph> | ||
===The underlying JavaScript code=== | ===The underlying JavaScript code=== | ||
<source lang="javascript"> | <source lang="javascript"> | ||
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true}); | |||
board.suspendUpdate(); | board.suspendUpdate(); | ||
var p = []; | |||
p[0] = board.create('point', [-1,-2], {size:2}); | |||
p[1] = board.create('point', [6,5], {size:2}); | |||
p[2] = board.create('point', [-0.5,1], {size:2}); | |||
p[3] = board.create('point', [3,3], {size:2}); | |||
var f = JXG.Math.Numerics.lagrangePolynomial(p); | |||
var graph = board.create('functiongraph', [f,-10, 10]); | |||
var g = function(x) { | |||
return JXG.Math.Numerics.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X()); | |||
}; | |||
var r = board.create('glider', [ | |||
line = board. | function() { return JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5); }, | ||
function() { return f(JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5)); }, | |||
graph], {name:' ',size:4,fixed:true}); | |||
board.create('tangent', [r], {strokeColor:'#ff0000'}); | |||
line = board.create('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1}); | |||
board.unsuspendUpdate(); | board.unsuspendUpdate(); |
Latest revision as of 15:29, 20 February 2013
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});
board.suspendUpdate();
var p = [];
p[0] = board.create('point', [-1,-2], {size:2});
p[1] = board.create('point', [6,5], {size:2});
p[2] = board.create('point', [-0.5,1], {size:2});
p[3] = board.create('point', [3,3], {size:2});
var f = JXG.Math.Numerics.lagrangePolynomial(p);
var graph = board.create('functiongraph', [f,-10, 10]);
var g = function(x) {
return JXG.Math.Numerics.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X());
};
var r = board.create('glider', [
function() { return JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5); },
function() { return f(JXG.Math.Numerics.root(g,(p[0].X()+p[1].X())*0.5)); },
graph], {name:' ',size:4,fixed:true});
board.create('tangent', [r], {strokeColor:'#ff0000'});
line = board.create('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1});
board.unsuspendUpdate();